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The usual way of approaching portfolio optimization is to think of a 
utility.
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Then pare away what is outside the constraints.

Utility is king, constraints are secondary.

That’s a perfectly good way to look at the problem.  But not the only
way.
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We’re going to take a different view – we’ll be in a world where the 
constraints are always met, and the utility is secondary.  Anything 
outside the constraints will be invisible to us.

We’ll have a local view rather than a global view.

Because we take a different point of view, we will see different things.



5

-2 -1 0 1 2

-1
0

-9
-8

-7
-6

-5

Theoretical Quantiles

N
eg

at
iv

e 
ut

ilit
y

Here is a complete portfolio optimization. We have 22 trades to choose 
from.  (Some people might think this problem is over-constrained but 
what do they know.)

We have been trained to think of optimization as being about gradients 
and moving through space.  But really in portfolio optimization what 
we are doing is going through the store with our trolly looking on the 
shelves for the best trade to select.
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The trade we are going to select is the one circled in red.

Optimization by convention is minimizing, so we are minimizing 
negative utility.  In this problem we are maximizing the information 
ratio. 

We are quite optimistic – we think we’ll get an information ratio of 10.

The x-axis on the plot is arbitrary, but in this case it is the quantiles
from a Gaussian distribution.

Once we have the trade in our trolly, we head for the cashier and then 
home.
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Only once we’re home do we get to see how good of a shopper we were 
in the store.
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We picked the one circled in red.  It turned out to be quite mediocre 
among our choices.  We should have picked the one circled in green.

We see that indeed we were optimistic – we were looking for an 
information ratio of ten, we got one near negative one.
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If when we were in the store, the salesperson had said “You should get 
that one circled in green.” We would have said “No thank you, we 
don’t need any help.”

The problem is that we have a low correlation between the ex ante 
estimate of utility and the realized utility.

Low correlation necessarily means difficult (that is, bad) optimization.
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Here is an easier optimization.

It is easier because we have changed the utility.  Instead of maximizing 
the information ratio, we are minimizing variance.

But still in this case we see we were optimistic.  We thought we’d get a 
variance of something like 1.3 but we actually got about 2.5.  This was 
in the first quarter of 2008, so things were beginning to hot up.

Even though we got the level wrong, we still have quite a nice 
correlation between ex ante and realized.

Note that the smallest ex ante value is also the smallest realized value.  
So we have perfect optimization in this case.  Well, we would have if 
this were all of our choices, but actually we are just looking at a sample 
of our choices.
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The Idea of Random Portfolios

CONSTRAInt

We used the general technique of random portfolios to get the data for 
the last plot.

The idea of random portfolios is that we have a set of portfolio
constraints.  We then sample from the population of portfolios that obey 
all of the constraints.



12

Constrained weights

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Weight of asset 1

W
ei

gh
t o

f a
ss

et
 2

We are sampling from the orange area.

You can think of it as drawing portfolios from an urn.  The portfolios 
that are in the urn are determined by the constraints.

Change the constraints and you change the urn.
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TANGENT

We go off on a tangent here and explain how to actually generate
random portfolios.

There are many ways of doing it, I’ll tell you my strategy.

In order to do that, I need to tell you my approach to portfolio
optimization.
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We are back to the global view.

Optimization has a negative utility that we want to minimize.

But there are also constraints to consider.  How do we do that?
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The way I handle most constraints is to penalize violations of them.

The bigger the violation, the bigger the penalty.
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What the optimizer sees is negative utility plus constraint penalties, and 
that is what  it minimizes.
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With random portfolios there is no utility.  (Sometimes that is the whole 
point of using random portfolios – that we are ignoring utility.)

But there are still constraints that we can penalize.
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If we define the utility as identically zero, then we have something to 
minimize.  When we get to zero, we know we are done.  We can’t go 
lower, and we know that all the constraints are satisfied.
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We can increase the dimension of that image by 1 if we think of a 
volcanic crater with a lake in it.

The process is to parachute onto a random spot in the crater.  Once we 
hit ground we start kicking a rock downhill.  Where the rock splashes 
into the lake is our random portfolio.

We then typically do that hundreds or thousands more times.

Photo by USGS of Mount Pinatubo
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END TANGENT
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We’re back in our local view.

And we’re back doing a hard problem.

We’re maximizing information ratio here, and the correlation between 
our ex ante estimate and the realized is negative.  This does not lead to 
good optimization.

We want high correlation.
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Here we have high correlation.

It is even higher correlation than what we saw before when minimizing 
variance.

By the numbers you might guess that this is a very similar problem to 
the one we saw before.

You would be correct.  The difference is that a constraint has been 
swapped for a similar one.



23

Second problem: no asset 
contributes more than 5% weight

First problem: no asset contributes 
more than 5% to the variance

The more recent plot uses a weight constraint: the maximum weight of 
any asset is 5%.

The original problem said that the maximum fraction of the portfolio 
variance from any asset is 5%.

I claim that when people impose the weight constraint, they are 
subconsciously thinking they are doing the variance fraction constraint.  
We didn’t used to have the technology to do variance fraction 
constraints, so weight constraints were substituted.
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The plot shows boxplots of bootstrapped correlations in the two cases.

The weight constraint really does seem to have a higher correlation of  
ex ante to realized than the variance fraction constraint.

This makes the weight constraint appear better for optimization: high 
correlation means good optimization.
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But really what we want in optimization is good utility.

We see that in this case the variance fraction constraint induces smaller 
variances than the weight constraint.  This is especially true at the good 
end.  The higher correlation with the weight constraints seems unlikely 
to overcome the difference in utility.

Of course to really know anything about the weight versus variance 
fraction constraints we would need to look at this over many time 
periods, and probably with several sets of constraints (other than weight 
versus variance fraction).
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What have we seen?

A technique has been suggested to us of how to find constraints that 
will improve optimization.  Of course it still needs to prove itself.  If it 
works, it would be most useful for cases where we are using expected 
returns.  

I hypothesize that the most helpful constraints (should there be any) 
would be contingent on how the expected returns are estimated.

There are brute force ways of using random portfolios to examine the 
value of constraints, but I quite like the subtlety of this idea.


