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Abstract

A recent Barron’s article examined the efficacy of stock recommen-
dations on the television show Mad Money. Statistical analyses of stock
recommendations are scrutinized here in detail, and a powerful analysis
using random portfolios is suggested. Differences between simple returns
and log returns are discussed, as is the usefulness of the statistical boot-
strap. The cost to individuals of trading stocks can easily overwhelm even
quite good recommendations.

1 Introduction

An article entitled “The Cramer Effect—and Defect” by Bill Alpert appeared
in the August 20, 2007 edition of Barron’s. The article (which is available on
http://www.barrons.com) explored the stock-picking ability of Jim Cramer on
the CNBC show Mad Money. The article concluded that his market-beating
ability is questionable—a conclusion that predictably was at odds with other
opinions, including those of CNBC.

The “Cramer effect” refers to the phenomenon that stocks recommended on
Mad Money experience a large return the day after the broadcast. The average
jump is on the order of 2 percent.

I was the advisor on the analysis of the data for the Barron’s article. This
paper discusses the strengths and weaknesses of a number of analyses that have
been performed. It finishes with an analysis—proposed but not implemented—
that is substantially better than any that were performed, and that gives the
paper its title.

2 A Word about Returns

There are two main types of return: simple returns and log returns. Another
name for log returns is “constantly compounded returns”. There are numerous

*This paper is available in the working papers section of http://www.burns-stat.com. The
author thanks Bill Alpert and Oliver Graham for useful comments.



alternative names for simple returns, including “real return”. If there is no
indication at all of what type of return it is, it is often a simple return.

If P, is the price of the asset at time 1 and P is the price at time 2, then
the simple return from time 1 to time 2 is:
_ hBR-P P

- 2-1 (1)

R
2 P, P,

The formula for a log return is:

ro = log <%) = log (P2) —log (P1) (2)

where “log” means the natural logarithm.

Note the reasonably common convention that uppercase R means a simple
return, and lowercase r means a log return.

Returns are unit-less—the currency in the denominator cancels the currency
in the numerator. However, they do pertain to a period of time. Returns are
often annualized, you want to know if they have been. You also need to know
if the returns are expressed in percent or not (whether simple or log returns).

Simple returns can be arbitrarily large, but can not be less than minus one.
A simple return of —1 means that all of the money has been lost. Log returns
can take on any number. As Figure 1 shows, log returns are always less than
simple returns except they are equal at zero. At the extreme a simple return of
—1 corresponds to a log return of negative infinity.

However, for short periods of time (such as a week or less), the difference
will virtually always be very small. A log return of 1% corresponds to a simple
return of 1.005%. A log return of 10% is equivalent to a 10.52% simple return.

If you have one type of return, you can easily get to the other type. The
formula to convert from a simple return to a log return is:

To = IOg (RQ + 1) (3)

To go from log returns to simple returns, do:

Ry =exp(rg) — 1 (4)

These formulas can be very useful when doing operations on returns. You
can transform to the type of return that is easiest for the operation and then
transform back at the end.

Simple returns are easy when going from individual assets to a portfolio.
The simple return of the portfolio is the weighted sum of the assets’ simple
returns.

The log return of a long period of time is the sum of the log returns of periods
that partition the period. Consider having three time points (and hence two
periods). The log return for the whole period is:



Figure 1: The value of simple returns relative to log returns, with the y=x line
as a reference.
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This technique can obviously be extended to any number of intermediate
time points.

Summing over time is a reason to believe that log returns follow a normal
distribution. The reasoning uses the Central Limit Theorem about the sum of a
large number of similar random variables. Though the assumption of a normal
distribution is often made, it is decidedly not true. Returns have a much higher
probability of extreme values than the normal distribution.

Figure 2 shows a normal qqplot of the 2006 daily returns of the S&P 500
index. If the returns were normally distributed, they would lie close to the
line. You can see how improbable the assumption of normality is by using the
command:

rn <- rnorm(251); qgunorm(rn); qqline(rn, col=’blue’)

a number of times in the R language [R Development Core Team, 2007]. The
random normals tend to cling to the line more than the 2006 S&P returns.
The S&P returns for the exceptionally non-volatile years 2004 and 2005 do look
normal. The 2007 returns look fatter tailed (less normal) than 2006.

To summarize the uses of the two types of returns, simple returns often make
more investment sense while log returns often are better for statistical modeling.



Figure 2: Daily returns of the S&P 500 during 2006 compared to a normal
distribution.
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3 Data

A few datasets have been used in analyses of Cramer’s record:
e 30 picks selected in [Nayda, 2006].

e 1275 buy recommendations over the history of Mad Money compiled by
YourMoneyWatch.com.

e A six-month history of all recommendations (3458 in number) maintained
by TheStreet.com. Jim Cramer founded TheStreet.com but claims these
data are unofficial.

e A dataset of 445 buy recommendations in 2007 selected by CNBC.

4 Some Analyses

Statistical textbooks often imply that there is one correct analysis. The reality
is that all analyses are wrong. The real task is to find an analysis from among
those that are least wrong.

The analyses for Barron’s and the graphics for this paper were all done with
R [R Development Core Team, 2007]. This is software that is purpose-built for
data analysis. Many people think it is the best data analysis software that
money can buy, except that R is free.



4.1 Descriptions and Conclusions

[Engelberg et al., 2007] studied 391 first-time Mad Money recommendations
made between 16 November 2005 and 23 June 2006, along with a variety of
other data to study a number of questions. While their analyses are very inter-
esting, they are not especially similar to those presented here and so will not be
discussed further.

Analysis N

The Nayda analysis [Nayda, 2006] selects the first company recommended dur-
ing the Smart Money segment of the broadcast from 1 November 2005 to 12
December 2005. The stock returns were compared to the S&P 500 returns.

If a selection is to be made, this is a quite good one to make. People tend
to remember the first (and the last) items in a presentation. So viewers are
probably more likely to act on the first recommendation than any others. Also
this is presumably the recommendation that Cramer thinks is his strongest for
the day.

The result was that the recommendations—when bought the day after the
broadcast and held for either 19 days or 39 days—underperformed the S&P 500.

Analysis Bl

The first question Barron’s asked was in relation to the Cramer effect. What is
the stock’s behavior just before and just after the mention of the stock on Mad
Money? To answer this question the data were adjusted for the “market” (the
S&P 500) and the stock’s behavior relative to the market the previous year.

Figure 3 is a result from that study. It shows that on average the stocks rise
mildly (relative to the market and past performance) before the broadcast, rise
a lot the day after, and then slide downward for a number of days.

Analysis B2

The other main question was how viewers might fare when implementing Mad
Money recommendations. For this the stock returns were adjusted for the mar-
ket but not for prior behavior of the stock.

Figure 4 shows the mean cumulative log return similar to Figure 3. There are
two differences between Figure 3 and Figure 4. The first is that the cumulative
returns are from day O rather than day minus 2—this is of no consequence
because the starting point doesn’t change the behavior. (Day 0 is the day of
the broadcast, but markets have closed before the broadcast is aired.) The
second difference is that Figure 4 does not adjust for the stock’s previous year.
Note that adjusting by the previous year’s behavior pulls the returns downward.
In other words Cramer’s recommendations tend to have positive momentum
relative to the S&P 500.



Figure 3: The cumulative log return from two days before broadcast relative
to both the S&P 500 and the stock’s prior year. The pointwise 95% confidence
interval is indicated in yellow. (YourMoneyWatch data)
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Figure 4: The cumulative log return from the day of the broadcast relative to
the S&P 500. The pointwise 95% confidence interval is indicated in yellow.
(YourMoneyWatch data)
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Table 1: 95% confidence interval of the mean simple return relative to the S&P
500 for Featured positive recommendations bought on day 5 and held 25 days.
(TheStreet data)

| n. obs. | mean | lower bound | upper bound |
506 [0.74% | -0.06% [ 1.60% |

Analysis C

CNBC provided an analysis of a selection of recent, emphatic recommendations.
They buy five days after the broadcast and hold for either one or two months.
Given Figure 4 it is sensible to wait to buy rather than buying the day after the
broadcast.

The mean return of the recommendations was 1.18% for one month and
2.50% for two months while the average one month return of the S&P 500
over the period was 0.39%. Given that large of a difference they declared it
significant.

4.2 Key Considerations
4.2.1 Significance

An analysis that just produces estimates is incomplete. The variability of the es-
timates also needs to be addressed. This is especially important in this context—
stock returns are very variable, so what seems like large differences may have
minimal statistical significance.

The Nayda analysis does not explicitly address significance. It is put into
a statistical hypothesis framework in which the alternative hypothesis is that
the Mad Money recommendations outperform. Since the sample results do
not outperform, it is obvious that the null hypothesis will not be rejected at
typical levels of significance, so significance is at least implicitly addressed. (All
introductory statistics textbooks have descriptions of hypothesis tests.)

Confidence intervals are a form of significance that is often preferred to
hypothesis tests. Confidence intervals indicate a range that the value might fall
into. Table 1 shows a 95% confidence interval. It is the confidence interval for the
mean of the simple return relative to the S&P 500 of positive recommendations
in the Featured section of Mad Money, where the stock is bought on the fifth
trading day after the broadcast and held for 25 days. All confidence intervals,
unless otherwise noted, were found via the statistical bootstrap (Section 5).

People have found incredibly clever ways to misinterpret confidence intervals.
Figure 5 shows the bootstrap distribution of the mean of the data along with an
indication of the confidence interval given in Table 1. The vertical line indicates
the mean of the data. The distribution can be thought of as the probability of
where the true mean lies.



Figure 5: Bootstrap distribution with 95% confidence interval of the mean
simple return relative to the S&P 500 for Featured positive recommendations
bought on day 5 and held 25 days. (TheStreet data)
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First off, what do I mean by “true mean”? Our data are 505 instances of rec-
ommending a stock. We aren’t really interested in those 505—we are interested
in future recommendations. There is a population of future recommendations,
and we are hoping the 505 recommendations that we have in hand are represen-
tative of that population. The task we have set ourselves is to learn the location
of the mean of that population of future recommendations.

One misinterpretation of confidence intervals is that the truth is equally
likely throughout the interval. That is virtually always wrong, and in particular
it is wrong here. Values in the middle of the interval are much more likely than
values near either edge.

There are two interpretations of confidence intervals. The first interpretation
supposes that we generate a large number of intervals. In this interpretation
the true value is either in the interval or outside of it—we don’t know which.
But if we generate 1000 confidence intervals (perhaps on 1000 different market
commentators), then we expect that the true value will be in about 950 of the
intervals. This is the frequentist interpretation.

The other interpretation is Bayesian. Bayesians will agree with the fre-
quentist interpretation, but say there is no need to make it so complicated. A
Bayesian is willing to say that the true value has a 95% probability of being
in the interval we created. The key difference is the meaning of probability—a
topic that is beyond the scope of this paper. Way, way beyond.

The CNBC analysis did not include any indication of variability. Table 2



Table 2: 95% confidence intervals for the mean simple return. (CNBC data)

| holding period | n. obs. | mean | lower bound | upper bound ]

1 month 445 1.18% 0.47% 1.90%
2 months 445 2.50% 1.43% 3.60%

shows the 95% confidence intervals for these data. The lower bounds are above
the S&P returns, but probably most people would put less weight on the data
once they are given the confidence intervals. This is a particular instance of a
seemingly large difference not being so large.

4.2.2 Adjusting for the Market

The Nayda and Barron’s analyses adjust for the market day by day. In contrast
the CNBC analysis does not. It merely compares the market return for a similar
period of time. This implicitly assumes that the recommendations are evenly
spread throughout the period of time quoted for the market. Figure 6' shows
that not to be true, and that in this case there is significant bias.

When the number of recommendations is at full strength—mid March through
June—the market steadily rose. The two points at which there were significant
falls in the market were times when there were many fewer recommendations in
place. Of course the bias could have easily gone the other way. Not adjusting
for the market day by day for each recommendation adds a lot of noise to an
already very noisy process.

IThe R code to produce Figure 6 is:

function (filename=’countlev.eps’)

if (length(filename)) {
postscript(file=filename, height=3, width=5, horiz=FALSE)
par (mar=c(5,4,0,4)+.1, cex.axis=.7, cex.lab=.7)

}

datenam <- names(count.cnbc2c)

plot(nasdlev[datenam], type="1", axes=FALSE,
xlab="", ylab="Nasdaq Composite", lwd=2)

axis(2)

par (new=TRUE)

plot(count.cnbc2c, type="1", axes=FALSE, col="blue", xlab="",
ylab="", lwd=2)

axis(4, col="blue", col.axis="blue")

mondiff <- c(0, diff(as.numeric(substring(datenam, 6, 7))), 1)

whichdiff <- which(mondiff == 1)

abline(v=whichdiff, col="red", lty=2)

axis(1, at=whichdiff - 10, month.abb[1:7], tck=0)

box ()

if (length(filename)) dev.off()



Figure 6: CNBC recommendation counts compared to the Nasdaq Composite.
The black line (left scale) is the level of the Nasdaq Composite index; the blue
line (right scale) is the number of stocks in the two-month window at each point
in time. (CNBC data)
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4.2.3 Returns

The Nayda analysis made a schoolboy error of summing simple daily returns to
get longer period returns. Well, fair enough—he is a schoolboy, a fifth-grade
schoolboy. This looks to be an error in favor of Cramer—the rejection of skill
would probably be slightly stronger with the correct calculation.

Even though summing simple returns across time is incorrect, it is not so
uncommon for it to be done. Plots of cumulative simple returns are used. They
are wrong, but not so wrong as not to be useful—especially when the purpose
is to highlight differences of two strategies.

In our analyses should we use simple returns or log returns? That is a matter
of opinion and circumstance.

Let’s take a simple example of two stocks: one stock doubles in price, and
the other halves in price. If we start off with one dollar in each stock, we
end up with $2.50, and hence a simple return of 25%. The average of the log
returns is zero in this case. As suggested in Section 2 the weighted average of
the simple returns produces the portfolio simple return. This argues for using
simple returns in the analyses.

If instead of holding both stocks we are only going to hold one of them, the
situation changes. Now we are either going to double our money or lose half of
it (and we don’t know which when we make our decision). Almost all people

10



Figure 7: The cumulative mean simple return from the day of the broadcast
relative to the S&P 500. The pointwise 95% confidence interval is indicated in
yellow. (YourMoneyWatch data)
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are risk averse—losing an amount counts more against than gaining the same
amount counts for. If there will be a selection of recommendations, then using
log returns may be more appropriate.

Another factor is the statistical principle of being conservative. Simple re-
turns make the buy recommendations look better, log returns make those rec-
ommendations look worse. Conservative analyses would mean that the CNBC
analysis should have used log returns, and—given their generally insignificant
results—the Barron’s analyses should have used simple returns. In fact just the
reverse was the case. Only the Nayda analysis was conservative—the conclusion
was of no skill using simple returns.

That the Barron’s analyses used log returns was due to my habitual behav-
ior. My usual task is to prove that a strategy outperforms. The conservative
approach in such cases is to use log returns. I didn’t shift gears appropriately
for the Barron’s analyses once we saw indications of insignificance.

I also assumed that the difference when switching return types would be
small. In fact it has a bigger impact than I supposed. Figure 7 can be compared
to Figure 4 to see the effect of changing between simple and log returns.

4.2.4 Bias

It is always a good idea to ask if there are sources of bias in analyses. When
working with returns, seemingly very small biases can have big impacts.
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Table 3: 95% confidence intervals of the mean simple return relative to the S&P
500 using either all the data or only the relevant data. (CNBC data)

| data | holding period | n. obs. | mean | lower bound | upper bound |
full 1 month 445 0.26% -0.39% 0.91%
full 2 months 445 1.11% 0.11% 2.14%
relevant 1 month 410 0.38% -0.32% 1.08%
relevant 2 months 348 1.19% 0.01% 2.41%

Survival bias is popular in studies of equities. Suppose that we want to test
a strategy on the S&P 500; so we get a ten-year history of the returns of the
current constituents of the index. Using our strategy on this data, we compare
the strategy results to the S&P 500. This is an example of survival bias—we
have ruled out all of the stocks that fell out of the index, including those that
went bankrupt. We have also selected only the stocks that entered the index
and are still in it. The test is giving the strategy a big advantage.

In the present case of the Mad Money data there is only one instance of bias
that I'm aware of. The CNBC data purportedly hold the recommendations for
one or two months. In fact several of the recommendations were not old enough
at the time the data were created to allow the full holding period. Some were
only held for a day. The effect is to bias results towards zero. Assuming positive
performance relative to the index, this is a bias against Cramer. Table 3 shows
the extent of the bias.

4.2.5 What is the Question?

An analysis should be tailored to the question that it is trying to answer.

Tables 1, 2 and 3 give statistics on the mean return relative to the S&P for
a specific strategy. Looking at the mean is appropriate if we are thinking about
an individual who performs this strategy with many of the recommendations.
That may be the most reasonable scenario. But suppose we are thinking of
a large number of viewers each selecting one recommendation, looking at the
median would then make sense. The median would speak to the typical viewer
who implements a recommendation—half would do worse and half would do
better. Table 4 presents the 95% confidence interval for the median of positive
Featured recommendations when buying on the fifth day after broadcast and
holding 25 days.

Comparing Figure 3 with Figure 4, it seems that the Mad Money recom-
mendations have considerably more momentum than the S&P 500. This is
circumstantial evidence that the Nasdaq Composite may be a more appropriate
reference. Table 5 shows the difference that switching between these two indices
makes.
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Table 4: 95% confidence interval of the median simple return relative to the
S&P 500 for Featured positive recommendations bought on day 5 and held 25
days. (TheStreet data)

| n. obs. | median | lower bound | upper bound |
[ 505 ] 036% | -027% [ 1.08% |

Table 5: 95% confidence intervals of the mean simple return relative to either
the S&P 500 or the Nasdaq Composite. (CNBC data)

| holding period | index | n. obs. | mean | lower bound | upper bound |
1 month S&P 500 410 0.38% -0.32% 1.08%
2 months S&P 500 348 1.19% 0.01% 2.41%
1 month Nasdaq 410 | -0.01% -0.70% 0.70%
2 months Nasdaq 348 0.64% -0.53% 1.83%

4.2.6 Trading Costs

Up to this point we have ignored trading costs. Quite the elephant to ignore.
Suppose that we accept the 2.5% mean return of Table 2—the largest that we’ve
seen (and it was not relative to an index). The cheapest trading that I see for
an individual at the time of writing is US$7. In order to take advantage of a
recommendation, a viewer needs to buy the recommendation, hold it, and then
sell it. So there are $14 in trading costs. (There is also the bid-ask spread
to consider, but that will almost always be trivial in comparison.) In order to
break even, our viewer needs to buy $560 of each stock. If the true value of the
recommendations is less than 2.5% or trading cost is higher, then the viewer
will need to buy in even bigger blocks to break even.

The longest analyses we’ve discussed have two-month holding periods. This
is a very short time frame given the costs incurred by non-professional traders.
Longer time frames have a much better chance of paying off.

5 Bootstrapping

The statistical bootstrap is a means of assessing the variability of a statistic.
It was introduced by [Efron, 1979]. Computers are now literally thousands of
times better than in 1979, yet bootstrapping and its relatives are still not as
widely used as they might be.

Figure 5 shows an example of a bootstrap distribution. The mean of 505
returns was found. We then want to know how variable that mean is. The idea
of the bootstrap is that while our data consists of 505 specific numbers, we might

13



Table 6: Bootstrap and t distribution 95% confidence intervals of the mean
simple return relative to the S&P 500 for Featured positive recommendations
bought on day 5 and held 25 days. (TheStreet data)

| method | n. obs. | mean | lower bound | upper bound |
bootstrap 505 [ 0.74% -0.06% 1.60% |
t distribution 505 0.74% -0.09% 1.58% |

have got some other set of 505 numbers. We want to make minimal assumptions
regarding the datasets that we might have got. The bootstrap’s solution to this
problem is to sample our 505 numbers 505 times with replacement. A bootstrap
sample will contain multiple copies of some of the numbers and no copies of other
numbers.

To get the bootstrap distribution of our mean statistic, we do the following
steps:

1. Produce a bootstrap sample by sampling the 505 datapoints with replace-
ment 505 times.

2. Calculate the mean of the bootstrap sample produced in step 1, and save
it.

3. Repeat steps 1 and 2 a large number of times. Ten thousand bootstrap
samples were used in the analyses of Section 4.

The old-fashioned approach to get a confidence interval for a mean is to assume
a normal distribution and use Student’s t distribution. Returns are not normally
distributed, but the mean of 505 returns is going to be quite close to a normal,
so we don’t need to worry about the assumptions. Table 6 shows the bootstrap
and t distribution confidence intervals for the analysis we are focusing on. The
differences are very small and of no consequence.

So if there is no real difference in the intervals, why bother with the boot-
strap? It actually took me less time (including computing time) to get the
bootstrap interval than to get the traditional interval. Plus I felt more con-
fident with the bootstrap that I wasn’t making a stupid blunder. While an
introductory statistics book will tell you how to produce a confidence interval
for a mean, that same book is not going to tell you how to produce a confidence
interval for a median or a 5% trimmed mean or the raft of other statistics that
you might find useful. That book is not going to tell you whether or not the
sampling distribution of your statistic in a particular instance is close to the
normal or not.

The world of the bootstrap isn’t entirely rosy. There are a number of
refinements—such as bias correction—that get around problems with the boot-
strap in certain situations. There are even situations where those refinements
fail as well. However, a lot of the time we don’t care about formal inference, we
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just want a notion of whether or not the statistic is massively too variable to tell
us much. The bootstrap will often work for this purpose even if it gives a biased
impression of variability. There is a large literature on the bootstrap—starting
points might be [Davison and Hinkley, 1997, Efron and Tibshirani, 1993].

6 Pseudo-Cramer

All of the analyses presented in Section 4 fail miserably at what should arguably
be the real question: Does Jim Cramer have stock picking skill? A secondary
question is how to take advantage of the skill. But if there is no skill, then there
is nothing to take advantage of.

In the analyses that were done, some set of returns were compared to an
index—mostly the S&P 500. The recommendations look very little like an index.
Performance relative to the S&P 500 is largely driven by the behavior of the
few largest capitalization stocks. If those few giant stocks have relatively good
returns, then it will be very hard to beat the index. If the giants do relatively
poorly, then it will be easy to beat the index. [Burns, 2007b] describes this and
other problems of using indices for performance assessment.

There is a way to accurately evaluate stock-picking skill. Consider the recom-
mendations as a portfolio—stocks enter the portfolio as they are recommended,
and they leave the portfolio when the recommendation changes. This portfolio
will have a number of characteristics: the number of stocks, its volatility, its
distribution of market capitalization, and so on. A large number of random
portfolios can be generated that have the same characteristics as the Cramer
portfolio. The return of the Cramer portfolio would then be compared to the
distribution of returns from the pseudo-Cramer portfolios.

Random portfolios—also called Monte Carlo portfolios—satisfy some given
set of constraints but are otherwise free to have any holding in the universe
of assets. More details on random portfolios including their advantages for
performance measurement are given in [Burns, 2007b] and [Burns, 2007a]. Let’s
look at the constraints most likely to be useful in the current situation.

6.1 Number of Names

Matching the number of names is an obvious choice. We can expect the behavior
of portfolios to change as the number of assets changes.

When mimicking investment funds, it is common to give a constraint on the
maximum weight. In this case the assets are likely to be equally weighted, or
perhaps to have a weight for buys and a larger weight for strong buys. Matching
the weight distribution of the recommendation portfolio is sensible.

Equal weighting is artificial, but justifiable when testing recommendations.
They do not work when testing trading strategies.

15



6.2 Volatility

One reason to use the same number of names in the random portfolios as are
in the recommendation portfolio is to try to match the volatility. It is a basic
tenet of finance that more volatile portfolios should produce higher returns.
That the recommendation portfolio is almost sure to have a higher volatility
than the S&P 500 (or even the Nasdaq Composite) means that comparing the
recommendations to these indices could be giving the recommendations a large
advantage.

We can produce random portfolios that have a volatility that is in a small
neighborhood of the volatility that the recommendation portfolio happens to
have. So the recommendations are at neither advantage nor disadvantage. This
step needs the estimation of a variance matrix of the returns of the universe of
assets, a quite easy task given price histories of the assets.

6.3 Market Capitalization

In the long run small capitalization stocks tend to outperform large cap stocks.
However, there are periods when small caps strongly underperform large caps.
Market capitalization is a large source of variation in returns that we can con-
trol for with random portfolios. We might partition the stocks into 10 or 20
categories of capitalization, and then select the same number of stocks from
each category as are in the recommendation portfolio.

6.4 Other Constraints

Other sources of variation might be hypothesized. As we’ve seen there is an in-
dication that Cramer tends to recommend high momentum stocks. The amount
of momentum could be controlled for. Matching the sector allocation would be
another possibility.

6.5 Implementation Details

So far the discussion of random portfolios has been as if the recommendation
portfolio were static. In fact it will change—daily in Cramer’s case. However,
the key characteristics of the recommendation portfolio are unlikely to change
dramatically. Hence the random portfolios need not be generated nearly so often
as daily. However, they could be if a very strict control were desired.

The recommendation portfolio will have some return for a given time period.
The random portfolios will produce a distribution of returns for that period.
Unlike in the analyses of Section 4, here we can produce a rigorous test of
skill. If there is quibbling about assumptions, then the set of constraints for
the random portfolios can be adjusted. In any case, the assumptions are clearly
visible.

The fraction of random portfolios with returns larger than the return of the
recommendation portfolio is the p-value of a statistical hypothesis test of skill.

16



The null hypothesis is that there is no skill (certainly the random portfolios do
not exhibit skill); the alternative hypothesis is that there is skill. This test is
independent of whether we use simple returns or log returns. We can also test
for negative skill.

7 Conclusion

In my opinion, Jim Cramer’s stock-picking superiority is at best unproved. But
being skeptical is my job. However, Jim Cramer is not on my personal list of
most suspicious market commentators. That kudo would go to chartists. I find
it hard to believe that anyone can tell what is going to happen to a price series
in the future by looking at the pattern of its history. On the other hand, I'd
love to be proved wrong. A database of picks that are tested against random
portfolios would be the most likely way of proving me wrong.

All media commentators that issue specific recommendations should main-
tain a database so that tests of skill as outlined here would be easy to perform.
Analysts to perform the tests are also needed—the work involved is mainly data
gathering. If these two elements were in place, investors would be well served.
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