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Abstract

Problems with performance measurement using information ratios rel-
ative to a benchmark are exposed. Random portfolios (that obey con-
straints but disregard utility) are shown to measure investment skill effec-
tively. Investment mandates can also be based on random portfolios—this
allows active fund managers more freedom to implement their ideas, and
provides the investor more flexibility to gain utility. The issue of the
proper attitude towards tracking error is broached, but left largely unde-
cided. There is also a critique of Fisher’s method of combining p-values
that shows Stouffer’s method to be preferable.

1 Introduction

The accurate assessment of the skill of fund managers is quite obviously of great
value. It is also well known to be a very difficult task. A variety of techniques,
some quite clever, have been devised. Some methods measure individual man-
agers, others a class of managers. A few references are [Kosowski et al., 2001],
[Muralidhar, 2001], [Engstrom, 2004], [Ding and Wermers, 2004]. There are also
[Ferson and Khang, 2002] and [Grinblatt and Titman, 1993].

More accurate performance measurement allows a quicker determination of
whether a fund manager has skill or not. It can also provide a more fair method
of compensating fund managers for their contribution to the investor.

This paper focuses on using random portfolios [Dawson and Young, 2003]
to measure the skill of fund managers, and to specify mandates. Conceptually
we want to look at all portfolios that satisfy the constraints, and compare their
realized utility to the realized utility of the fund under question. For practical
reasons we take a random sample from the set of portfolios satisfying the con-
straints to use in the comparisons. This leaves us free to use whatever measure
(or measures) of quality that we like, and we will have a statistical statement
of the significance of the quality of the fund. This procedure eliminates some

∗This report can be found in the working papers section of the Burns Statistics website
http://www.burns-stat.com/. The author thanks Craig Israelsen for providing the data in
Table 1; and Larry Siegel and Barton Waring for a helpful discussion.
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of the noise that results from assessing a fund’s outperformance relative to a
benchmark.

R [R Development Core Team, 2004] was used for computations and graphs
for this paper. Random portfolios and optimizations were done with the POP
Portfolio Construction Suite [Burns Statistics, 2004].

The remainder of the paper consists of:

• Section 2 on measuring funds relative to a benchmark, and some of the
problems that ensue.

• Section 3 on combining p-values and using random portfolios to measure
fund manager skill.

• Section 4 on some issues with mandates, including a look at tracking error.

• Section 5 on creating mandates based on random portfolios.

• Section 6 that summarizes.

2 Management Against a Benchmark

Currently a great amount of performance analysis is relative to a benchmark.
Sometimes this is done because it is deemed reasonable, but other times for
lack of an alternative. A good discussion of the use and abuse of benchmarks is
[Siegel, 2003].

In this section (and the next) we use a dataset of the daily returns of an
unsystematic collection of 191 large-cap and small-cap US equities. The data
start at the beginning of 1996 and end after the third quarter of 2004. Results
are reported for each quarter except the first two. The first two quarters are
excluded so that all results are out of sample.

One thousand random portfolios were created from this universe with the
constraints that no more than 100 names were in a portfolio, no short values
were allowed, the maximum weight of any asset was 10%, and the sum of the
8 largest weights was no more than 40%. In some figures the first 500 random
portfolios are compared to the second 500 in order to indicate the significance
of any pattern that might appear.

Three artificial benchmarks were created. The first is the equal weighting of
the assets. The other two have weights that were randomly generated. These
latter two are referred to as the “random benchmarks”—note that the random-
ness is only in the selection of the weights of the assets, and these weights are
held fixed throughout time.

2.1 Outperforming the Benchmark

The information ratios of the random portfolios were calculated relative to the
benchmark that has equal weight in each stock. (An information ratio is the
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Figure 1: Probability of a positive information ratio by quarter relative to the
equally weighted benchmark. Each line represents 500 random portfolios.
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annualized return in excess to the benchmark divided by the annualized stan-
dard deviation of the differences in returns—an excess return derived from a
regression rather than subtraction is more desirable (see [Siegel, 2003]) but for
simplicity is not done here.) Figure 1 shows the probability that the random
portfolios have a positive information ratio against this benchmark for each
quarter. The black line corresponds to the first 500 random portfolios and the
red line to the second 500.

We might have expected the fraction of portfolios that outperform the equally
weighted benchmark to be closer to 50%. (The average probability is indicated
by the horizontal line.) The p-value is 0.006 for the test that positive and neg-
ative information ratios are equally likely. Note though that the benchmark is
outside the constraints that we have put on the random portfolios—the port-
folios can have at most 100 constituents while the benchmark has 191. The
benchmark is likely to have smaller volatility and hence a slight advantage in
outperformance.

While there is a tendency for the equally weighted benchmark to outperform,
there seems to be no systematic difference between quarters.

We now look at two benchmarks with randomly generated weights. The
mean weight is about 0.5%, and the maximum weight in each benchmark is
slightly over 2.5%. Figures 2 and 3 show the probability of a positive information
ratio. In these plots there are undeniable differences between quarters. In some
quarters there is a strong tendency for the benchmark to outperform the random
portfolios, in others a strong tendency for the benchmark to underperform.
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Figure 2: Probability of a positive information ratio by quarter relative to the
first random benchmark. Each line represents 500 random portfolios.
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There is no consistency of outperformance between the two benchmarks.

Figure 3: Probability of a positive information ratio by quarter relative to the
second random benchmark. Each line represents 500 random portfolios.
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On reflection this result should not be so surprising—though the extent of
the effect may be. A benchmark will be hard to beat during periods when the
most heavily weighted assets in the benchmark happen to do well. Likewise,
when the assets with large weights in the benchmark do relatively poorly, then
the benchmark will be easy to beat.

Figure 4 shows the quarterly returns of each of the three benchmarks plot-
ted against each other. The three benchmarks are obviously highly correlated.
This seems contradictory since the probabilities of outperforming the bench-
marks didn’t appear to be related. The explanation is illustrated by Figure
5. This shows the returns of the three benchmarks and the probability of out-
performance for each quarter. Even slight differences in return between the
benchmarks cause dramatic differences in the probability of outperformance.
That is, random portfolios provide a very sensitive measure of performance.

Clearly the more unequal the weights in a benchmark, the more extreme the
swings will be in the probability of outperforming. In this regard, the random
benchmarks that are used here are not at all extreme compared to many indices
that are used in practice as benchmarks.

Table 1 shows a history of U.S. mutual fund outperformance relative to the
“best fitting” benchmark of each fund. The data in this table were computed
by Craig Israelsen using the Morningstar database. [Israelsen, 2003] alludes to
the method of choosing the benchmark for each fund.

There are two histories for the S&P 500—one with all of the available funds,
and one containing only the funds that were live in all of the years. This was to
explore the possibility of survival bias. Not surprisingly, survival bias appears
to be minimal.

The pattern of outperformance of the S&P 500 by the funds is quite similar
to that for the random benchmarks as exhibited in Figures 2 and 3—some
years a large fraction of funds underperform and other years a large fraction
outperform.

Interpreting this data in the way that it is often used, we infer that managers
were, in general, bad during the 90’s, then they suddenly became very good for
three years starting in 2000, then returned to being bad in 2003. This is clearly
a ridiculous inference, but nonetheless is often done.

The outperformance of funds relative to the other two benchmarks, while
not completely stable, is much less variable. The S&P Midcap 400 almost
always beats more than half of the funds that track it, while the Russell 2000 is
almost always beat by more than half the funds that track it. There are several
possibilities:

• The fund managers that track the S&P Midcap are inept, and the fund
managers that track the Russell 2000 are quite skillful.

• The S&P Midcap has been hard to beat and the Russell 2000 has been
easy to beat.

• The volatilities of the funds are substantially different from the benchmark
volatility.
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Figure 4: Scatterplots of quarterly returns of the three hypothetical benchmarks.
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Figure 5: Probability of outperformance by quarterly return for the three hy-
pothetical benchmarks.
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• The outperformance is an artifact of the way that benchmarks have been
assigned to funds.

We don’t have enough information to decide among these. Random portfolios
could help inform us.

Some would argue—given the evidence we’ve just seen—that benchmarks
should be equally weighted indices. Even if this were accepted as practical
(see [Siegel, 2003] for some reasons why it isn’t), it still doesn’t solve the issue
of accurately measuring skill. Figure 6 shows the probability of the random
portfolios having an information ratio greater than two relative to the equally
weighted benchmark. There are definite systematic differences by quarter—
sometimes a large information ratio is easier to achieve than at other times.

2.2 Information Ratios and Opportunity

Figure 6 implies that the distribution of information ratios changes from quarter
to quarter. At least part of the reason is that information ratios are not purely
a measure of skill, but rather are a combination of skill and opportunity.

Imagine a case where all of the assets in the universe happen to have the
same return over a time period. Portfolios will vary from each other during the
period and hence have non-zero tracking error relative to the index. However,
all portfolios will end the period with the same return—all information ratios
will be zero.
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Table 1: US mutual funds outperforming benchmarks. Source: Craig Israelsen
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
S&

P
50

0
re

tu
rn

1.
31

37
.5

3
22

.9
4

33
.3

5
28

.5
7

21
.0

4
-9

.1
0

-1
1.

88
-2

2.
09

28
.6

7
#

of
fu

nd
s

(a
ll)

10
0

11
5

12
6

13
6

15
5

17
3

18
3

20
4

21
2

21
2

%
fu

nd
s

ou
tp

er
fo

rm
30

9.
6

24
.6

14
.0

24
.5

27
.2

72
.7

60
.8

56
.6

13
.2

95
%

co
nf

.
in

t.
(2

1,
40

)
(5

,1
6)

(1
7,

33
)

(9
,2

1)
(1

8,
32

)
(2

1,
34

)
(6

6,
79

)
(5

4,
68

)
(5

0,
63

)
(6

,2
0)

#
of

fu
nd

s
(f

ul
l
hi

st
or

y)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
%

fu
nd

s
ou

tp
er

fo
rm

30
9

22
13

16
23

74
63

59
12

95
%

co
nf

.
in

t.
(2

1,
40

)
(4

,1
6)

(1
4,

31
)

(7
,2

1)
(9

,2
5)

(1
5,

32
)

(6
4,

82
)

(5
3,

72
)

(4
9,

69
)

(6
,2

0)

S&
P

M
id

ca
p

40
0

re
t

-3
.5

9
30

.9
2

19
.1

8
32

.2
4

19
.1

1
14

.7
2

17
.7

2
-0

.6
0

-1
4.

53
35

.5
9

#
of

fu
nd

s
40

48
52

63
77

95
10

1
11

3
12

1
12

1
%

fu
nd

s
ou

tp
er

fo
rm

55
.0

41
.7

50
.0

23
.8

27
.3

53
.7

33
.7

39
.8

38
.0

28
.1

95
%

co
nf

.
in

t.
(3

8,
71

)
(2

8,
57

)
(3

6,
64

)
(1

4,
36

)
(1

8,
39

)
(4

3,
64

)
(2

5,
44

)
(3

1,
49

)
(2

9,
47

)
(2

0,
37

)

R
us

se
ll

20
00

re
tu

rn
-1

.8
2

28
.4

4
16

.4
9

22
.3

6
-2

.5
5

21
.2

6
-3

.0
2

2.
49

-2
0.

48
47

.2
5

#
of

fu
nd

s
26

34
40

50
69

84
97

11
1

11
5

11
5

%
fu

nd
s

ou
tp

er
fo

rm
61

.5
58

.8
75

.0
56

.0
60

.9
63

.1
71

.1
56

.8
67

.8
41

.7
95

%
co

nf
.

in
t.

(4
1,

80
)

(4
1,

75
)

(5
9,

87
)

(4
1,

70
)

(4
8,

72
)

(5
2,

73
)

(6
1,

80
)

(4
7,

66
)

(5
8,

76
)

(3
3,

51
)

8



Figure 6: Probability of an information ratio greater than two relative to the
equally weighted benchmark. Each line represents 500 random portfolios.
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Figure 7 shows the standard deviation of the information ratios of the ran-
dom portfolios for each quarter and each of the three benchmarks. The naive
assumption is that the standard deviations should all be 2. The plot exhibits
definite differences between quarters and between benchmarks.

Certainly the cross sectional spread of the full-period returns has an effect
on the standard deviation of information ratios. The volatility over time of the
assets will also have an effect. Figure 8 shows an experiment of varying these.
The data for the first quarter of 2004 were used. Each point in the figure has
had the volatility of each asset multiplied by a value and the returns for the
period multiplied by a value. The point at (1, 1) corresponds to the real data—
there the standard deviation of the information ratios (relative to the equally
weighted benchmark) is about 1.8. The points that are at 2 on the horizontal
axis have twice the spread of returns as the real data (a stock that really had a
3% return gets a 6% return, and a stock with a -1% return gets a -2% return).
The points that are at 0.5 on the vertical axis have half of the volatility as the
real data for all of the assets. The point at (2, 0.5) has a standard deviation of
information ratios that is about 7.

Figure 8 shows that the cross sectional spread of asset returns is very im-
portant to the opportunity to achieve a large information ratio. The spread of
returns has a bigger impact as the volatility of the assets decreases. Obviously
in reality there is a connection between the volatility of the individual assets
and the cross sectional spread of returns, but there is no reason to suppose that
they are in lock step.
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Figure 7: Standard deviations of the information ratios of random portfolios by
quarter.
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Figure 8: The standard deviation of information ratios as volatility and returns
are artificially varied (using data from the first quarter of 2004).
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2.3 Measuring Skill via Information Ratios

In order to study the ability to measure skill, a set of 100 “managers” was
created. At the beginning of each quarter each manager performs a portfolio
optimization. The managers all use the same variance matrix, but each has a
unique vector of expected returns. The variance matrix is estimated from the
previous two quarters using a statistical factor model. The expected returns in
the optimization are based on the actual returns that are realized in the quarter
(since this is looking at future data, it is not a strategy that real fund managers
have available to them). The expected returns for the stocks are random normals
with mean equal to 0.1 times the realized mean daily return for the asset. The
standard deviation for the random normals is 0.1 times the standard deviation
of the realized daily returns for the asset. The objective of the optimization
was to maximize the information ratio—the absolute ratio, not relative to any
benchmark.

A common approach to testing for skill is to compute the information ratio
of the fund relative to its benchmark. The test is then to see if this information
ratio is too large given the null hypothesis that the true value is zero. There
are at least two approaches to the test. One is to feed the information ratios
for the individual periods—33 quarters in the current case—to a t-test. More
common is to calculate the information ratio for the whole period and use the
fact that the standard deviation is theoretically known, then use the normal
distribution. The statistics and p-values from these two approaches should be
similar. Figure 9 shows the p-values from the normal test for the 100 “managers”
for the information ratio based on the first random benchmark for the full time
period. The skill of the managers shows up by quite a large number having
p-values close to zero.

Another view is in Figure 10 which shows the number of hypothetical man-
agers with significant p-values as each quarter is observed—an additional point
on the x-axis becomes available as each quarter is completed. There are a couple
of aspects to this plot that are worrisome. The number of significant managers
is much more variable when only a few quarters have been observed. While
the number of managers that are significant at the 5% level grows reasonably
steadily as we would expect, the number that are significant at 1% seems to
stagnate.

We have seen that the assumption of known standard deviation in the normal
test is actually violated. Figure 11 shows the distribution of normal test p-values
using information ratios relative to the equally weighted benchmark when there
is no skill. Each of the “no skill managers” selects one of the 1000 random
portfolios at random each quarter—100,000 such managers were created. If
theory were correct, then the distribution in the plot would be uniform (that is,
flat). The distribution does not have enough mass in the tails, near 0 and 1. This
implies that it is harder (in this case) than it should be to prove fund managers
either skilled or unskilled. The deviation from the uniform distribution will be
time, benchmark and universe dependent.
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Figure 9: P-values of the 100 hypothetical managers based on the information
ratio relative to random benchmark 1 over 33 quarters using the normal test.
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Figure 10: Percent of hypothetical managers with significant p-values from the
normal test over time for random benchmark 1.
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Figure 11: Distribution of p-values from the normal test of information ratios
relative to the equally weighted benchmark on portfolios with zero skill.
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3 Measuring Manager Skill

We’ve already seen that assessing the skill of fund managers with information
ratios has severe problems.

A second commonly used method is to rank a fund relative to similar funds.
This has problems of its own. It supposes that all funds within the category are
doing the same thing. For instance, it isn’t entirely obvious how differences in
volatility should be taken into account, and seemingly small differences in the
universe that is used could have a major impact.

Even if all of the funds in a category used precisely the same universe, had
the same volatility and so on, we still wouldn’t know if the top-ranked managers
had skill. It could be that no manager in the category has skill and that the
top-ranked managers are merely the luckiest.

Random portfolios provide an opportunity to measure skill more effectively.
First, we take a statistical detour.

3.1 Combining p-values

In using random portfolios to measure skill, it will be necessary to combine
p-values from different periods of time. A key assumption of the methods of
combining p-values that we will explore is that they need to be statistically
independent. In our context as long as the tests are for non-overlapping periods
of time, this will be true to a practical extent, if not absolutely true.
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A formula for combining k statistically independent p-values is

Pcombined = −2
k∑

i=1

ln(pi) ∼ χ2
2k (1)

This is called Fisher’s method [Fisher, 1958]. Some of the fame of this
method is that it is a good textbook exercise to derive the distribution—see, for
example, [Bickel and Doksum, 1977].

An intuitive check on this formula is that an individual p-value of 1 will
add 0 to the combined statistic. An individual p-value near 0 will add a large
amount to the statistic. If an individual p-value were zero, then the combined
statistic would be infinite.

This last possibility brings up the question of what is done when the fund
outperforms all of the random portfolios. Naively this seems like a case of a
zero p-value, but it is not. The p-value is the probability of seeing a result
as extreme or more extreme than what is observed given the null hypothesis is
true. Therefore the p-value is computed as the number of random portfolios
that are as good as or better than the fund plus 1 divided by the number
of random portfolios plus 1 (because the observed value counts as well as the
random portfolios).

In many cases this adjustment of the p-value that adds 1 to both the nu-
merator and denominator can be considered pedantic. However, when using
Fisher’s method of combining p-values, the pedantry is necessary.

Let’s consider data from a particularly erratic fund manager. We have 6
periods, in 3 periods the manager outperforms all 999 random portfolios that
we generate and in the other 3 periods the manager underperforms all 999
random portfolios. Thus the p-values for the periods are some permutation of
.001, .001, .001, 1, 1, 1. Combining these we get a p-value of about .00004.
Thus we are quite convinced that the manager has skill.

However, if we test for negative skill, we get the same individual p-values
(in a different order) and hence the same combined p-value. We are in the
uncomfortable position of being convinced that the manager both outperforms
and underperforms.

One alternative for combining p-values is called Stouffer’s method. In this
technique the individual p-values are transformed into the quantiles of a stan-
dard normal. The p-value of the average of the quantiles is then found. In R
the command to do this is:

pnorm(sum(qnorm(x)) / sqrt(length(x)))

where x is the vector of individual p-values.
Stouffer’s method easily admits the use of weights for the individual p-

values—for example, if not all of the time periods were the same length. A
weighted sum of the quantiles is performed, and then standardized by its stan-
dard deviation—the square root of the sum of squared weights.
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Let’s return to our erratic fund manager. Immediately we see a problem
because a p-value of 1 will create an infinite value.

When using Stouffer’s method, we want to use centered p-values:

pcentered =
nx + .5
N + 1

where N is the number of random portfolios and nx is the number of portfolios
that are as extreme or more extreme than the observed fund.

Using centered p-values for the erratic fund manager, the quantiles of the
individual p-values sum to zero, and we get a combined p-value of 0.5 from
Stouffer’s method. This is much more reasonable than the result from Fisher’s
method.

Stouffer’s method is used to combine p-values in what follows.

3.2 Tests with the Example Data

Figure 9 shows a test of skill using information ratios relative to a benchmark.
Here we use the same data to test skill based on the mean-variance utility using
random portfolios.

The first step is to decide what specific utility is to be computed. In the
case of mean-variance utility we need to specify the risk aversion parameter. We
then compute the utility achieved within each quarter by each random portfolio
and by each manager. The utility of a manager within a quarter is compared to
the utilities of the random portfolios—this provides a p-value for that manager
in that quarter. Finally, we combine these p-values to derive a p-value for the
whole period for each manager.

Figure 12 plots the p-values based on random portfolio tests using mean-
variance utility with risk aversion 2. This has many more very small p-values
than Figure 9. Table 2 shows the number of hypothetical managers that achieved
various significance levels for different forms of the tests. The tests using random
portfolios clearly have more power than those using information ratios. About
a third of the random portfolio tests achieve a p-value less than 0.001, while
only one manager in one of the information ratio tests achieves this.

Figure 13 shows the number of hypothetical managers with significant p-
values as the number of quarters observed increases. This plot shows the number
of significant p-values growing rather steadily. The problems that p-values based
on information ratios seemed to have are not in evidence in this plot.

4 Investment Mandates

Mandates are the contracts that tell fund managers what they should do with the
investor’s money. Mandates should be created so that the investor maximizes
the usefulness of the entire portfolio. At present this goal is probably not realized
very well.
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Figure 12: P-values of the 100 hypothetical managers based on random portfo-
lios using mean-variance utility with risk aversion 2 (over 33 quarters).
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Table 2: Counts (out of 100) of the number of hypothetical managers achieving
significance levels in the various forms of tests over 33 quarters.

test < 0.05 < 0.01 < 0.001
random portfolio, risk aversion=2 67 57 37
random portfolio, risk aversion=1 68 56 35

random portfolio, risk aversion=0.5 67 52 34
random portfolio, risk aversion=0 66 51 33

information ratio, equal wt benchmark 35 12 0
information ratio, random benchmark 1 47 17 1
information ratio, random benchmark 2 43 14 0
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Figure 13: Percent of hypothetical managers with significant p-values over time
using random portfolios with risk aversion 2.
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4.1 Tracking Error Should be Maximized

Currently fund managers are often expected to have a relatively small tracking
error to their benchmark. If there were no opportunity to invest passively in
the benchmark, then this could be a rational approach. But is this the right
approach when passive investment is possible?

If both passive and active funds are held, then the total portfolio is enhanced
from lower volatility when the correlation between the passive and active por-
tions decreases (assuming the expected return and volatility of the active fund
do not change).

We can see what minimizing correlation means for the tracking error by
some minor manipulation of its definition. We will denote the active fund by A
and the benchmark by B, other notation should be self-explanatory.

TE2
B(A) = Var{A−B} = Var{A}+ Var{B} − 2Cov{A,B} (2)

Putting the covariance term alone on the left side and transforming to cor-
relation gives us:

Cor{A, B} =
Cov{A, B}√

Var{A}
√

Var{B} =
Var{A}+ Var{B} − TE2

B(A)
2
√

Var{A}
√

Var{B} (3)

Holding the variance of the active fund constant, the correlation between
the active fund and the benchmark is minimized when the (squared) tracking
error is maximized.
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This directly contradicts [Kahn, 2000], cited by [Waring and Siegel, 2003].
Who is right?

4.2 What is Risk?

The argument we’ve just seen says that tracking errors are ideally large, while
[Kahn, 2000] argues that tracking errors should be small. The discrepancy boils
down to the definition of risk. The argument in which tracking errors should be
large takes the risk to be the mean-variance utility of the entire portfolio—the
active part plus the passive part. The argument in which tracking errors should
be small takes risk to be the deviation from the benchmark.

Optimal behavior is vastly different depending on which is the more realistic
definition of risk.

Calling risk the deviation from the benchmark is the appropriate choice when
the benchmark is the liabilities of the fund. If there is no deviation from the
benchmark, then the fund carries no risk. For example if the fund needs to
deliver x times the value of the S&P 500 in 10 years, then this situation applies
with the benchmark equal to the S&P 500.

Alternatively if the benchmark is the S&P 500 but it could reasonably have
been some other index of U.S. equities, then exactly reproducing the S&P 500
is not going to be a zero risk solution. This is the more common case.

However, using the absolute utility of the portfolio (where we want to max-
imize tracking error) is also wrong—it ignores the liabilities altogether, as if we
knew nothing about them. As far as I know we don’t have the proper math-
ematics in place to easily evaluate policies when the liabilities are known only
with uncertainty. One way of thinking about the problem is that it is a gener-
alization of a dual benchmark optimization. So perhaps an approximate answer
can be obtained by performing an optimization with several benchmarks.

My (uneducated) guess is that using the absolute utility is almost always
closer to the right answer than using the active utility.

[Muralidhar, 2001] on page 157 speaks of an example where the actively
managed portfolio had a lower asset-liability risk (in a certain sense) than the
benchmark portfolio. This is obviously a case where deviation from the bench-
mark should not be considered to be the risk.

Traditionally there has been another reason to prefer small tracking errors:
small tracking errors enhance the ability to declare skill when information ratios
are used. Consider an extreme case. Two fund managers outperform an index
by 3%, their funds each have the same volatility, but one has a tracking error
of 1% while the other has a tracking error of 10%. From a global perspective
the two fund managers are equivalent—they have the same return and the same
volatility. But in terms of proving skill via the information ratio relative to the
index, the first fund manager would be judged to have skill while the second
could not be.
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4.3 Zero-Sum Games

In general active management is a zero-sum game. Active managers try to
outperform the average manager. Obviously not all managers can be above
average. Thus investors who use active managers need to try to evaluate the
quality of the active managers available to them. [Waring and Siegel, 2003]
argue that the investor is faced with a portfolio optimization problem where the
assets are the fund managers.

The key inputs into this optimization are the expected alphas of the man-
agers. The investor can use random portfolios to help get a sense of these as
long as they have returns of the managers and an idea of the constraints that
each manager uses. Here the random portfolios would not be used so much to
provide a p-value of skill, but rather an estimate of the alpha of a fund manager.

There is a possibility that active management need not be entirely a zero-
sum game. If the selection of active managers provides sufficient diversification,
then the investor can gain even without an increase in expected return. On
page 157 of [Muralidhar, 2001] it says, “... investment teams who are delegated
the responsibility of managing the assets should be rewarded for lowering the
asset-liability risk even if they do not outperform their benchmarks.” This topic
is also discussed in [Burns, 2003].

5 Random Portfolio Mandates

Random portfolios can be used as the basis of mandates. The investor specifies
the constraints that the fund manager is to obey; the manager is judged, and
possibly paid, based on the fund’s performance relative to random portfolios
that obey the constraints. This process gives fund managers the freedom to
shape their portfolios the way that they see fit, and provides investors with an
accurate measure of the value to them of a fund manager.

In a traditional mandate the investor and fund manager agree on a bench-
mark and a tracking error allowance. With a random portfolio mandate, it is
the constraints that need to be agreed upon. Of course each party will have
views on the constraints.

Fund managers will want the constraints to emphasize their strengths. For
example the universe of assets could be limited to some particular set. In general
fund managers want constraints to be loose so that they have a lot of freedom,
and the random portfolios are allowed to do stupid things.

The investor wants to set the constraints so that the fund manager is likely
to add as much value as possible. This tends to favor relatively tight constraints
on such things as volatility.

While there is a natural tension between the fund manager and the investor,
there is also quite a lot of room for cooperation. It is in the interests of both
that the fund manager is given enough freedom to capitalize on good investment
ideas.
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5.1 An Example Mandate

Here we briefly outline what a random portfolio mandate might look like. The
items in our mandate are:

• The evaluation period is 6 months.
The frequency of evaluation needs to take the fund manager’s strategy
into account. Obviously an evaluation over 1 week when the manager
is looking at time horizons on the order of 3 to 6 months will be pure
noise. A manager that typically holds positions for less than a day could
be evaluated very frequently, but the evaluation need not be especially
frequent.

• The universe of assets is the constituents of the S&P 500 at the
beginning of the period.
To keep things simple, the universe is fixed throughout the period regard-
less of constituent changes in the index itself. An alternative would be
to allow new constituents into the universe, in which case the random
portfolios would be given the opportunity to trade into the new assets.

• The number of assets in the portfolio is to be between 50 and
100, inclusive.
These numbers reflect the desire by the fund manager to hold 100 names
or slightly fewer, while the lower bound ensures that the fund never gets
too concentrated.
If it is found that the size of the portfolio has a material effect on the
distribution of utility, then the random portfolios can be generated with
sizes that characterize the actual sizes that the portfolios are likely to be.
(In this case the range of allowable sizes would probably be reduced.)

• The positions are to be long only.

• The maximum weight of any asset will be 5%.
This seems like a straightforward constraint, but isn’t—there could be
numerous interpretations of what it means. One practical choice is that a
position can be no more than 5% at the point when it is created or added
to.

• The volatility of the fund will be no more than 150% of the
volatility of the minimum variance portfolio that satisfies the
remaining constraints.
This clearly needs more careful definition. Not just any volatility will do—
it has to be agreed. One choice would be to provide a specific variance
matrix of the universe of assets. An equivalent approach is to provide the
specification of how the variance matrix is to be produced. For example,
use the default arguments of the POP function factor.model.stat with
4 years of daily log returns.
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5.2 Operational Issues

In the example mandate, volatility is constrained statically—only information
available at the beginning of the period is used. While this avoids the problem
of the fund manager unintentionally breaching the mandate because of changes
during the period, it doesn’t necessarily state how the investor would like the
fund manager to behave. The investor may desire the fund manager to con-
trol the volatility of the fund throughout the period using updated information.
While slightly more involved, the random portfolios can have trading require-
ments imposed upon them during the period. However, if the fund manager is
being judged based on a utility that includes volatility as a component, then
the fund manager should be taking changes in the volatility environment into
account in the best interests of the investor.

The evaluation criterion can be at least as useful in shaping the fund man-
ager’s behavior as the constraints. The criterion can be anything that can be
computed using information that is available at the end of the period—we are
not limited to any particular measures such as the return or a mean-variance
utility. For example, the criterion might include the skewness of the daily log
returns during the evaluation period, and the correlation with some proxy of
the rest of the investor’s portfolio.

The fund manager may be at a disadvantage (or advantage) relative to the
random portfolios if they are allowed unlimited turnover. If a portfolio is already
in place, then it is reasonable for the random portfolios to be generated so that
there is a maximum amount of trading from the portfolio that exists at the start
of the period.

Proposed revisions may arise about the form of the mandate. For example
the fund manager may come to think that a particular constraint is not the best
approach. With the use of random portfolios the fund manager can demonstrate
to the investor the effect of changing the constraint. The mandate can be revised
from period to period as more is learned.

5.3 Performance Fees

Performance fees can easily be based on random portfolios from a mandate. As
stated earlier, the criterion used to measure success can be specialized to fit
the particular situation. As long as the criterion is a close match to the actual
utility of the investor, then the interests of the investor and fund manager are
aligned when a performance fee is used.

The starting point for a performance fee based on random portfolios is likely
to be the average utility of the random portfolios. The fund manager should
be paid for utility that is delivered above the base. How much is paid for an
increment in utility is, of course, up to the investor. The payment should be for
how much utility is delivered, not how difficult it is to deliver.

As in [Waring and Siegel, 2003] the investor is (or should be) doing a port-
folio optimization. The investor is selecting weights for a variety of active and
passive funds. The investor may assign different utility functions to different
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fund managers (for instance the investor could vary what the managers should
have a small correlation to), but it is sensible for the investor to pay the same
amount to each fund manager for an equivalent increase in utility. More weight
should be given to managers who have the ability to deliver a lot of utility.

6 Summary

Random portfolios have been shown to be of use in two respects—measuring
skill and forming investment mandates.

The measurement of skill with random portfolios avoids some of the noise
that is introduced when performance is measured relative to a benchmark. This
means that knowledge of skill can be more precise. An accurate assessment of
skill with random portfolios requires a knowledge of both the returns of the fund
and the constraints that the fund obeys. Less accurate assessment can be done
where the constraints are not known specifically. The statistical statements
that result are distribution-free—there are no assumptions on the distribution
of returns or measures of utility.

Mandates that are based on random portfolios allow fund managers to play
to their strengths because they need not be tied to a benchmark. This also allows
more flexibility for the investor to shape the behavior of the fund managers to
best advantage.

Other uses of random portfolios include the assessment of the opportunity
set available to a fund manager with a given strategy.

References

[Bickel and Doksum, 1977] Bickel, P. J. and Doksum, K. A. (1977). Mathemat-
ical Statistics: Basic Ideas and Selected Topics. Holden-Day.

[Burns, 2003] Burns, P. (2003). Portfolio sharpening. Working paper, Burns
Statistics, http://www.burns-stat.com/.

[Burns Statistics, 2004] Burns Statistics (2004). POP Portfolio Construction
User’s Manual. http://www.burns-stat.com.

[Dawson and Young, 2003] Dawson, R. and Young, R. (2003). Near-uniformly
distributed, stochastically generated portfolios. In Satchell, S. and
Scowcroft, A., editors, Advances in Portfolio Construction and Implemen-
tation. Butterworth–Heinemann.

[Ding and Wermers, 2004] Ding, B. and Wermers, R. (2004). Mutual fund stars:
The performance and behavior of U.S. fund managers. Technical report,
http://papers.ssrn.com.

[Engstrom, 2004] Engstrom, S. (2004). Does active portfolio management create
value? an evaluation of fund managers’ decisions. Technical Report 553,
Stockholm School of Economics, http://swopec.hhs.se/hastef/.

22



[Ferson and Khang, 2002] Ferson, W. and Khang, K. (2002). Conditional per-
formance measurement using portfolio weights: Evidence for pension funds.
Journal of Financial Economics.

[Fisher, 1958] Fisher, R. A. (1958). Statistical Methods for Research Workers,
13th Edition. Hafner Publishing.

[Grinblatt and Titman, 1993] Grinblatt, M. and Titman, S. (1993). Perfor-
mance measurement without benchmarks: An examination of mutual fund
returns. Journal of Business, 66:47–68.

[Israelsen, 2003] Israelsen, C. L. (2003). Relatively speaking. Financial Plan-
ning Magazine.

[Kahn, 2000] Kahn, R. N. (2000). Most pension plans need more enhanced
indexing. Investment Guides, Institutional Investor.

[Kosowski et al., 2001] Kosowski, R., Timmermann, A., White, H., and Werm-
ers, R. (2001). Can mutual fund stars really pick stocks? new evidence from
a bootstrap analysis. Working paper, http://papers/ssrn.com.

[Muralidhar, 2001] Muralidhar, A. S. (2001). Innovations in Pension Fund
Management. Stanford University Press.

[R Development Core Team, 2004] R Development Core Team (2004). R: A
language and environment for statistical computing. R Foundation for Statis-
tical Computing, http://www.r-project.org. ISBN 3-900051-07-0.

[Siegel, 2003] Siegel, L. B. (2003). Benchmarks and Investment Man-
agement. CFA Institute (for hardcopy). Full text available online at
http://www.qwafafew.org/?q=filestore/download/120.

[Waring and Siegel, 2003] Waring, M. B. and Siegel, L. B. (2003). The dimen-
sions of active management. The Journal of Portfolio Management, 29(3):35–
51.

23


