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ABSTRACT

Asset prices are typically measured when markets close
however the closing times may differ across markets.  As a
result the returns appear to have predictability and
correlations are understated.  This will distort the value of
portfolios, value at risk measures, and hedge strategies.  A
solution is proposed.  Prices can be "synchronized" by
computing estimates of the values of assets even when
markets are closed, given information from markets which
are open.  From these prices, synchronized returns are
defined and can be used to perform standard calculations
including measuring time varying volatilities and
correlations with GARCH. The method is applied to G7
index data.
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I. Introduction

Daily data are always measured from one point in time to the same point 24 hours
later.  However the time of measurement is often different in markets which do not have
the same trading hours.  In some cases, such as the US and Japan, there are no common
open hours while in others, there is partial overlap.  For example, the FTSE closes at 5:00
London, but this is only 12 noon in New York.  Thus any news that occurs in New York
during the afternoon will not show up in British prices until the next morning and will be
measured as part of the next day returns.  Even if the prices are only quoted at slightly
different times, there are still biases; these have been emphasized in studies of individual
markets where closing prices may be stale.  See for example, Scholes and Williams (1977)
and Lo and MacKinlay (1990).  When the times differ by many hours the effects can be
dramatic.  In today’s global markets, these problems take on a new importance.

Asynchronous data complicates or biases many of the tasks of financial
management.  Perhaps most important, the value of the portfolio is never known at a point
in time and consequently measures such as value or value at risk may be misleading. P&L
for a company or for a trading desk can be seriously biased or even manipulated by the use
of stale prices.  Second, hedging must be done when markets are open, and there is a
problem determining what value is to be hedged and what is the cost of the hedge.  Third,
correlations are generally understated and this leads to further inaccuracies in value at risk,
hedge ratios, and asset allocations.  Thus any analyst using daily data where prices are not
measured at the same time for all assets, is potentially making systematic errors and should
consider some of the solutions proposed in this paper.

We report here on a statistical model designed to solve these problems.  The
general approach is to recognize that even when markets are closed, the asset values may
change and that new values can be estimated for use before the market reopens.  Such
estimated data will be called “synchronized” and can be used to estimate value,  value at
risk, hedge parameters and correlations.  As a byproduct, estimates of the term structure
of volatilities and correlations can be computed using modern GARCH procedures.  See
for example Engle and Mezrich (1996) for a survey.

II.  Predicting Prices for Closed Markets

At the end of trading in New York, the value of a portfolio which includes London
stocks, should not be measured with the closing price in London but should be measured
with an estimate of the value of the London portfolio.  Even though this estimate will not
be exactly right, it should have no systematic biases and thus is superior for most financial
applications.  Consider a day when the US market falls 1% after London closes.  To value
the London stocks at the closing price is highly unrealistic.  It will result in the US share of
the portfolio declining today while the London share declines tomorrow.  Value at risk
calculations, asset allocations, and hedging decisions should all be considered based on the
estimated value of the London portfolio.  The estimated prices should have the property
that they are unbiased given the information available to the market and consequently
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simply reassign a portion of the London returns to today rather than tomorrow.  That is,
average returns are unchanged; only the timing is different.

A simple picture may be useful in keeping track of these times.  Consider the S&P
and the FTSE which close at 4:00 in New York and 5:00 in London respectively with a 5
hour time difference.  Visualize a single time line with events in New York shown below
and events in London above the line.
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The day t accounting return is measured from close to close in both markets and
consequently day t+1 returns are not perfectly synchronized.  A day t return on the S&P
has some overlap with day t+1 returns in London.  When New York closes, there is
information that can be used to predict what the London price would be if the market
were open.  Since it is no longer possible to trade at the London closing price, this
prediction has no simple trading implications.

In order to formulate this estimation problem in the simplest fashion, assume that
the New York data are closing prices denoted St, t=1,… , T.  Thus S1 means the price on
the NYSE at 4:00 on the first day. The exchange opens 17.5 hours later at 9:30 the next
morning. If we allow fractions of a day, then S1.73 is the opening price for day 2.
Of course when it is 4:00 in New York, it is 9:00 PM in London, and the 5:00PM close in
London on day 1 occurred at 12:00 in New York which is 4 hours before the New York
close.  Thus the London closing price can be denoted LONS 83.0 .   In this way the estimated

price in market j at time t can be described in terms of the observed prices j
t j

S  as
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Such prices will be called Asynchrony Adjusted or simply Synchronized prices.  The logs
are used to be consistent with continuously compounded returns.  Clearly if S is observed
at t, then its expectation is just this value.  However, if the market closed before t, then the
past prices in this market and all other markets that have subsequently closed, are
potentially useful in predicting S at t.  The expression tI  refers to the complete information
set of all recorded prices at time t.  Typically, this will be the set of closing prices known
at the time the New York market closes, but it could include other times as well.

The synchronized prices in (1) are also unbiased estimates of the next recorded
price if future changes from the synchronized prices are unpredictable.
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The variance of this prediction can be denoted
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This variance will clearly depend upon the time from t to tj+1, upon the current volatility
of the asset, and upon the value of the intervening information up to time t in predicting S.

To illustrate the approach, consider a simple example of a perfectly hedged
portfolio - long Japanese ADR’s traded in New York and short the underlying stocks
traded in Tokyo.  For the illustration we ignore currency risk.  When Tokyo stocks rise,
this portfolio will fall, but when the New York market opens, hours later, the ADR’s will
open higher, off-setting the losses.  Similarly, if there is positive news in New York, the
portfolio will rise temporarily until the Japanese market opens and the short positions
show losses.  Thus there will be strong negative autocorrelation in the measured or
accounting value of the portfolio and it will not have a zero variance.  The variability and
predictability of these returns are however purely illusory and result from the use of old
prices in valuing the portfolio.  There are clearly no gains to be made from recognizing the
predictability of prices since by the time the forecasts are made, the prices used are no
longer available.

If instead, the portfolio is evaluated with synchronized prices, then the portfolio
will be much more stable.  When New York closes, the ADRs have a closing market value
but the current value of the Japanese stocks must be inferred.  Since on average, the
ADRs and underlying stocks are priced the same, the estimated value of the Tokyo stocks
would be just the ADR values and the total portfolio value would be zero.  Similarly, the
ADR prices would be estimated when Tokyo closes.  With synchronized prices, this
portfolio would show no variability, but is it truly riskless?

The risk in such a portfolio is truly close to zero if it can be closed at a point in
time.  However, since the markets are not open at the same point in time, this is not
possible.  Thus there is always some risk in opening or closing such a portfolio since an
unhedged position will necessarily be held for some hours.   The variance for this portfolio
is simply a fraction of the daily variance of the returns and the value at risk is proportional
to this standard deviation.  These standard deviations are calculated directly from the
model as formalized in (3).

If this portfolio is held for several days, the difference between average
synchronized and average accounting returns is reduced.   Similarly, the value at risk
measures would be close and correlations between different portfolios over multi-day
periods will be close.

The task is to formulate a model that can give the expected prices at any point in
time given the most recent information and also the covariance matrix of all future prices.
In the next section the asynchronous GARCH model will be introduced which computes
both an expected return and a covariance matrix for any horizon.
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III. Asynchronous GARCH

Accounting returns show cross correlations that must be modeled along with time
varying volatilities and correlations.  Because the correlations theoretically only have
predictability for one day in the future, a first order vector moving average is the natural
model.  Let the vector of returns occurring in different markets measured at various times
on day t be denoted Rt.  Since the individual markets close within 24 hours,
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where { }jj
tt min = .   Since New York is the last market to close, t will generally simply

refer to the day in New York.  However the notation will allow the analysis to be
rewritten from the perspective of any market.

The Asynchronous GARCH model is formulated as a vector first order moving
average with a GARCH covariance matrix as in

(5) tttttt HVMR =+= −− )(, 11 εεε

where M is the moving average matrix and H is the covariance matrix of ε ,  the
unpredictable part of returns from the perspective of time t-1.  For a first order vector
moving average with J assets, there are J2  elements in M which must be estimated to
match the J2 first order autocorrelation coefficients.  In world of efficient markets, the
diagonal and below diagonal elements of the autocorrelation matrix should all be zero
since these are times with no overlap.  This only implies that the M matrix should have this
form if the innovations are uncorrelated.  However, this will not generally be the case, so
the implication is only that the last row of M must be zero.  Nevertheless, empirically the
M matrix is typically found to be upper triangular with some non-zero elements on the
diagonal corresponding to markets which have serially correlated returns.

Defining the synchronized returns as the change in the log of the synchronized
prices given by
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The estimated change in value from the end of one day until the next is the sum of the
innovation ε  and its impact on the future opening price Mε .  Substituting (2)(4) and (5)
into (6) gives the synchronized return as
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)ˆ(1 tt RV − is a  positive definite covariance matrix for all time periods, since tH  is positive
definite, and the synchronized returns are serially uncorrelated since the epsilons are
serially uncorrelated.  Furthermore, the mean of the synchronized and the unsynchronized
returns will be almost identical over any sample period since these differ only insofar as the
means, 1−≠ tt εε .  Furthermore, any such differences are multiplied by M which is mostly
zero with a few small non-zero elements.  The variances and covariances however will be
different and typically larger for the synchronized returns since some of the variability of
the accounting returns is spread across days.

The unconditional moments of the accounting and synchronized returns can be
directly computed from (7) and (5).  Letting  ( ) ( )11 '' −−=Ω= tttt EE εεεε ,
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An estimate of the covariance matrix of synchronized returns can be obtained from the
contemporaneous and lagged covariances of accounting returns. An unbiased estimate of
the covariance matrix of synchronized returns can be formed as:
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However, there is no guarantee that this covariance matrix is positive definite.  This result
is simply a generalization of the Scholes and Williams(1977) result.

The term structure of correlations and volatilities of the synchronized returns can
be directly calculated using the parameters of the GARCH model.  In particular, letting

tktH ,+ be the covariance matrix of returns on day t+k given information on day t, then the
term structure of correlations and volatilities is easily computed from the covariance
matrices:
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This differs from the calculation of the term structure of correlations of measured
or accounting returns. For example assuming (5) to be correctly specified:
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or in general
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This covariance matrix therefore does not include the imputed value accruing after
markets close on the last day of the forecast period. However since only one term is
different between (11) and (12), the average volatilities and correlations will be very
similar over multiple day holding periods.

IV. EMPIRICAL FINDINGS

The G-7 equity markets exhibit very clearly the problems with asynchronous data.
As these markets span the globe they include markets with almost perfectly synchronous
data and markets which are completely out of phase.  Estimates of correlations will
typically be too small when the markets are highly asynchronous. In Table I, for example
the highest correlations are between the CAC, DAX and FTSE, and between the S&P500
and Toronto.  Much lower are the correlations of the Nikkei with all others
 

TABLE I
CORRELATIONS OF G-7 EQUITY RETURNS

Jan 2,1990 to Oct 3,1996
CAC DAX FTS MIL NIK S&P TTO

CAC  1.000  0.597  0.617  0.319  0.246  0.286  0.252
DAX  0.597  1.000  0.448  0.411  0.275  0.248  0.224
FTS  0.617  0.448  1.000  0.273  0.261  0.330  0.316
MIL  0.319  0.411  0.273  1.000  0.193  0.139  0.145
NIK  0.246  0.275  0.261  0.193  1.000  0.146  0.191
S&P  0.286  0.248  0.330  0.139  0.146  1.000  0.557
TTO  0.252  0.224  0.316  0.145  0.191  0.557  1.000

Of course there is no reason to believe that all correlations should be high.  One
indication of the correct average or unconditional correlation can be found from time
aggregated data.  Such data are relatively unaffected by the timing of markets since the
degree of asynchronicity is much less.  In the following table correlations between weekly
returns of the same indices are presented, where a week is defined as five trading days.  In
most cases the numbers are larger.  In particular, the correlation between S&P and NIK is
now .298 rather than .146, and the correlation between S&P and the three big European
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indices, the FTSE, CAC and DAX rises from .2or .3 up to .4 or .5.   At the same time the
within European correlations are little changed except for Milan.

TABLE II
WEEKLY CORRELATIONS  G-7

Jan 2,1990 to Oct 3,1996
WCAC WDAX WFTS WMIL WNIK WS&P WTTO

WCAC  1.000  0.663  0.576  0.465  0.308  0.447  0.359
WDAX  0.663  1.000  0.528  0.490  0.281  0.408  0.327
WFTS  0.576  0.528  1.000  0.373  0.311  0.495  0.423
WMIL  0.465  0.490  0.373  1.000  0.233  0.268  0.216
WNIK  0.308  0.281  0.311  0.233  1.000  0.298  0.296
WS&P  0.447  0.408  0.495  0.268  0.298  1.000  0.634
WTTO  0.359  0.327  0.423  0.216  0.296  0.634  1.000

If these differences are due to asynchronicity, then they should also appear in lag
effects.  It should appear that later closing markets forecast earlier markets.  In table III,
the daily first order correlations are tabulated.  The largest elements are in the last two
rows, revealing that US and Canadian returns forecast the earlier markets.  The FTSE
predicts the DAX and the CAC, DAX and FTSE all forecast the NIKKEI.  Milan and
Toronto both exhibit substantial autocorrelation which could be a consequence of stale
quotes in the closing index.  This is plausible in markets without high volume.

TABLE III
LAGGED CROSS CORRELATIONS OF G-7

Jan 2,1990 to Oct 3,1996
CAC DAX FTS MIL NIK S&P TTO

LCAC  0.029  0.160 -0.001  0.223  0.161  0.039  0.090
LDAX -0.018  0.010 -0.006  0.140  0.126 -0.014  0.063
LFTS  0.012  0.153  0.040  0.184  0.140  0.001  0.088
LMIL  0.024  0.021  0.013  0.201  0.063  0.010  0.033
LNIK -0.035 -0.056 -0.042  0.024  0.019 -0.023  0.031
LS&P  0.208  0.306  0.267  0.246  0.223  0.053  0.206
LTTO  0.116  0.151  0.153  0.148  0.137  0.050  0.260

These results are simply for unconditional correlations.  With the Asynchronous
GARCH model discussed above, the correlations between accounting returns and the
correlations between synchronized returns can both be calculated at each moment of time
and forecasts of these can be computed.  The long run forecasts of both synchronized and
unsynchronized returns should be close to the weekly correlations tabulated above.
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V.  EMPIRICAL RESULTS FOR SYNCHRONIZED RETURNS

The model described in equation (5) requires specification of the GARCH
covariance matrix as well as the moving average model for the mean.  Using G7 equity
data from July 1987 through October 1996, a model was formulated, estimated by
maximum likelihood and subjected to diagnostic testing.  The crash was included in the
data set because it was an event with very important correlations, however in much of the
analysis below, the focus will be on the 90’s. The GARCH model is a component model
(See Engle and Lee(1993) and Engle and Mezrich(1996)) of the BEKK type (See Engle
and Kroner(1995)) which includes some leverage terms and the moving average means.
Altogether there are 96 estimated parameters.   The model and the diagnostic tests will be
presented in the next section.  In this section the moving average matrix and the
synchronization of returns will be presented.

The moving average matrix M from equation (5) was specified to have mostly
zeroes with a few non-zero estimated parameters.  The estimated return equation is given
by:
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where the variables are ordered (CAC, DAX, FTSE, MIL, NIK,S&P, TTO) and rows
predict columns just as in the correlation tables.  All coefficients have t-ratios greater than
three except the three negative coefficients in Japan and the .07 coefficient in France.  The
row with the largest coefficients is the S&P row which means that there is substantial
predictability of all other markets given US returns.  This is natural because the US closes
last.  Although Canada also showed predictability, this appears to be primarily a result of
autocorrelation and a somewhat similar story applies to Italy.

Based on this moving average matrix and the computed innovations, ε , the
synchronized returns can be directly calculated.
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TABLE IV
CORRELATIONS OF SYNCHRONIZED RETURNS

Jan 2,1990 to Oct 3,1996
SCAC SDAX SFTS SMIL SNIK SSPX STTO

SCAC  1.000  0.703  0.650  0.437  0.343  0.441  0.308
SDAX  0.703  1.000  0.578  0.481  0.298  0.482  0.312
SFTS  0.650  0.578  1.000  0.381  0.321  0.530  0.381
SMIL  0.437  0.481  0.381  1.000  0.236  0.295  0.200
SNIK  0.343  0.298  0.321  0.236  1.000  0.298  0.250
SSPX  0.441  0.482  0.530  0.295  0.298  1.000  0.565
STTO  0.308  0.312  0.381  0.200  0.250  0.565  1.000

Examination of these correlation matrices reveals that in most cases, the
synchronized return correlations are much closer to the weekly correlations than the daily.
For example, the S&P correlation with the NIKKEI in daily data is only .146 while in both
the weekly data and the synchronized data it is .298. The correlation with the FTSE is
.330 in daily data, .495 in weekly data and .530 in the synchronized data.  Even in markets
with relatively small non-synchronicity, the effects are noticeable.  The CAC – DAX
correlations are .597 daily,  .663 weekly and .703 synchronized, while MIL-FTS
correlations  rise from .273 to .373 and .381.

What other properties do synchronized data have?  Table V presents the
annualized means and volatilities of the accounting and synchronized returns.

TABLE V
MEANS AND VOLATILITIES OF

 ACCOUNTING AND SYNCHRONIZED RETURNS
Jan 2,1990 to Oct 3,1996

CAC DAX FTS MIL NIK SPX TTO
Mean Acc. 0.93 5.75 7.17 -1.00 -8.59 9.62 4.34
Mean Syn. 0.93 5.73 7.16 -1.00 -8.61 9.62 4.34
Vol. Acc. 17.49 16.80 12.42 18.47 23.14 11.35 8.54
Vol. Syn. 18.23 18.76 13.16 22.50 23.87 11.35 9.97

It is clear that the means are virtually unchanged by calculating returns on a synchronized
or accounting basis, but the volatilities are slightly higher for the synchronized returns.
This is not surprising since volatilities of asynchronous data are theoretically too low as
first pointed out by Scholes and Williams (1977).
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VI. DYNAMIC CORRELATIONS

The GARCH model can be used to forecast volatilities and correlations of either
the accounting data using equation (12) or the synchronized data using equation (10).  For
longer horizons however the results should be very similar.  Several examples illustrate
this point.  In Figure 1, the term structure of correlations between MILAN and S&P and
between MILAN and FTSE are presented for the last date in the sample, October 3, 1996.
In both cases, the very short term correlations are much lower than the longer horizons as
was already illustrated by the daily vs. weekly unconditional correlations.  The curves
approach the unconditional or theoretical synchronized correlations as the horizon gets
large.  The FTSE on this date overshoots the long run but then decays toward it while the
S&P moves rather quickly to the long run value.

If such a correlation term structure is computed starting on each day of the sample
period then by selecting the 30 day correlation, a constant maturity graph can be
constructed.  In Figure 2, the 30 day correlations between DAX and MIL and S&P are
presented over the entire sample period.  As can be seen the DAX-MIL correlations are
far more volatile ranging from .25 to .6 while the S&P-DAX correlations drop only to .4
and rise only to .6 except just after the ’87 crash.
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Figure 1
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Figure 2.
VII. THE ASYNCHRONOUS GARCH MODEL AND DIAGNOSTICS

The model estimated is of the Component Form – See Engle and Lee(1993) and
Engle and Mezrich (1996) which can be described concisely as
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where H is the conditional covariance matrix of the innovations, ε ,  Q is the permanent
part of this covariance process so that H-Q is the transitory component,   Ω̂  is the sample
covariance matrix of ε , and )0,min(εη =  where the minimum is calculated for each element
of the vector.   In this model, K=3 and the dimension of ε  is 7x1 so that all the matrices
are 7x7.  While it may appear that such a model has 735 parameters, most are taken to be
zero.  Only 80 parameters plus the moving average parameters are estimated.  The non-
zero parameters corresponding to this structure along with their standard errors and t-
ratios are given in the Appendix to Burns, Engle and Mezrich(1997).   The model is
estimated by maximizing the log likelihood using an efficient genetic algorithm.
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Associated with this model is a collection of diagnostic tests.  These are tests
against various forms of dependence in the standardized residuals.  If the model is correct,
the innovations, ε , should be serially uncorrelated and have a conditional covariance
matrix, H.  Thus the standardized residuals defined by εε 2/1~ −= H , should have mean zero
and identity covariance matrix conditional on any past information set. Several tests of this
hypothesis are presented. Each of these tests examines the performance in this sample and
therefore could naturally be supplemented by out-of-sample tests of exactly the same
form.

The first test, in Table VI.a, simply looks at the contemporaneous covariance
matrix to check whether it is approximately the identity matrix.

Table VI.a
Covariance of Standardized Residuals:

INDEX NIK DAX MIL CAC FTS S&P TTO
NIK 1.030386 -0.040918 -0.042275 -0.00606 -0.0227   0.00277 -0.05615
DAX -0.040918 0.969820 0.008062 -0.01707 -0.0216 -0.01452 0.002657
MIL -0.042275 0.008062 1.011082 -0.00216 -0.0135 -0.02169 -0.01669
CAC -0.006062 -0.017076 -0.002163 1.00902 0.00745 -0.03888 -0.02127
FTS -0.022707 -0.021689 -0.013560 0.00745 1.0130 -0.01685 -0.06074
S&P 0.002771 -0.014523 -0.021697 -0.03888 -0.0168   1.02411 -0.02066
TTO -0.056157 0.002657 -0.016698 -0.02127 -0.0607 -0.020665 1.032501

The Chi square statistic that tests whether this is an identity matrix is 41.85 on 28 degrees
of freedom and has a p-value of 0.0448.  Thus, this matrix of unconditional covariances is
very close to satisfying the identity assumption for the standardized residuals.

Subsequent tests are all dynamic tests of various types of temporal dependence.  In
each case the Ljung-Box statistics test for various kinds of time dependence. All of these
test statistics are computed using 15 lags so the asymptotic 5% critical value is 25.  These
are computed based on the rank autocorrelations and cross correlations, rather than the
conventional autocorrelations; consequently the tests are far more robust to outliers in the
data set and typically exhibit more power.  In each case the table is organized so that rows
predict columns.

Table VI.b presents tests of autocorrelation in standardized returns.  If the moving
average model truly captures the dynamics of these markets, then there should be no
remaining autocorrelation or cross correlation  There are 5 out of 49 entries exceeding this
value which could suggest the need for a slightly richer moving average model.

Table VI.b
Ljung-Box Tests for Cross Correlation of Standardized Residuals

INDEX NIK DAX MIL CAC FTS S&P TTO
NIK 13.17 7.05 8.862 22.80 23.73 15.12 15.905
DAX 16.31 16.57 18.824 11.84 17.62 13.97 16.970
MIL 11.91 10.81 14.411 14.64 23.95 18.75 16.808
CAC 16.48 13.75 18.228 11.11 41.56 18.91 17.454
FTS 11.05 19.27 12.236 22.14 13.87 12.65 6.903
S&P 26.28 44.07 14.064 14.40 14.39 21.44 26.424
TTO 12.55 16.15 18.219 14.30 16.60 15.10 31.818



14

Table VI.c gives similar results for squared standardized residuals.  Significant
diagonal elements therefore indicate failures with respect to own information sets and off-
diagonal elements suggest cross country causality in variance.  Now there are 6 significant
entries out of 49.  There is slight weakness in the univariate models for Canada, UK, Italy,
and Japan  as well as some predictability of the US and Canadian volatility based on
German volatility.  Overall however, these statistics are pretty good.

Table VI.c
Ljung-Box Tests for Squared Standardized Residuals

INDEX NIK DAX MIL CAC FTS S&P TTO
NIK  25.97 11.119 11.70 15.270 14.281 17.65 8.719
DAX 17.40 21.198 23.36 16.270 10.180 30.89 34.313
MIL 17.10 11.251 30.84 16.958 13.903 16.82 15.405
CAC 21.83 19.889 13.49 7.407 8.295 24.24 17.316
FTS 11.04 12.908 13.36 18.493 28.365 15.79 6.118
S&P 13.58 8.852 11.78 12.156 17.518 14.79 15.471
TTO 22.98 15.503 19.67 17.936 12.537 16.09 29.055

Table VI.d examines multivariate leverage effects by checking whether the level of
return in one market is correlated with subsequent squared returns in another market.
There are 4 out of 49 significant entries here.  The intriguing statistics here are the
suggestions that directional moves in France predict volatility in Germany and Italy.

Table VI.d
Ljung-Box Tests for Leverage Effects of Standardized Residuals

INDEX NIK DAX MIL CAC FTS S&P TTO
NIK   22.156 7.831 15.65 19.41 14.640 20.32 14.532
DAX 18.054 13.979 10.95 16.98 9.818 14.87 15.708
MIL 15.798 15.300 26.70 16.45 16.480 18.54 25.260
CAC 21.532 29.215 28.44 22.32 7.731 15.64 14.528
FTS 9.412 8.557 11.50 16.31 14.843 6.92 9.822
S&P 5.414 16.372 10.81 20.41 5.958 20.41 10.453
TTO 20.638 12.491 16.67 13.10 14.178 11.30 15.987

Table VI.e examines the autocorrelation of cross products of standardized
residuals.  For example, the first element is an autocorrelation test of the series made up of
returns in Japan times returns in Germany, each standardized by the model.  The test is
expected to reveal failures in the estimates of covariances.  The statistics look fine.
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Table VI.e
Ljung-Box Autocorrelation Tests of Cross Products of Standardized Residuals:

INDEX DAX MIL CAC FTS S&P TTO
NIK   21.7856 11.4359 34.3772 16.9797 9.4629 6.5749
DAX 8.7119 8.7200 15.8421 22.5017 6.7044
MIL 17.7490 12.0109 18.8546 18.2795
CAC 19.7531 25.1769 7.3293
FTS 18.3938 13.3379
S&P 14.9570

Overall there are 16 entries which exceed 25 in the “standardized residual” tables
out of a total of 169.  Several of these are only a fraction above 25 and thus the results
broadly support the specification.  The model was selected from simpler models by
examining diagnostic tables such as these; this is a natural method for picking a
parsimonious model, but it does leave the exact significance level of the tests uncertain
due to pretest effects.

VIII. CONCLUSIONS

This paper has presented an approach to computing synchronized returns and their
term structures of volatilities and correlations from asynchronous data.  The central task is
estimating the value of assets that are not trading so that the portfolio value can be
estimated at a moment of time. From these estimated prices, synchronized returns can be
defined which have similar properties to accounting returns when aggregated over time,
but can also be used for modeling time varying correlations, volatilities and hedge ratios.

Synchronized returns and their time varying characteristics are computed from a
multivariate GARCH model with a first order vector moving average called an
Asynchronous GARCH model. From the same model, characteristics of the accounting
returns can be calculated.

Any analyst using daily data where prices are not measured at the same time for all
assets, is potentially making systematic errors by using observed or accounting prices since
some of these will be stale.  The use of weekly data will reduce these biases, though not to
zero, but may hide some of the detail which is of interest.  Global portfolios have distorted
values when accounting data are used, and estimated value at risk measures will
consequently be incorrect.  P&L for a company or for a trading desk can be seriously
biased or even manipulated by the use of stale prices.  Because correlations are on average
too low, hedge ratios will likely be too low unless the data are synchronized.  Portfolio
rebalancing should be done with a good measure of the value of each asset at a common
time; otherwise the consequences could be different from those desired.   It is commonly
said that international diversification is not as valuable as it would appear, and part of this
may be the underestimation of correlations.
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