
S POETRY

Patrick J. Burns

Copyright c©1998 Patrick J. Burns
Permission to reproduce individual copies of this book for personal use is

granted. Multiple copies may be created for nonprofit academic purposes—a
nominal charge to cover the expense of reproduction may be made. Using this
text for commercial instruction is prohibited without permission.

There is no guarantee (express or implied) on the book or the accompanying
software. The author takes no responsibility for damage that may result from
their use.

S-PLUS is a registered trademark of MathSoft, Inc. S is a trademark of
AT&T. Other trademarked products are also referred to.

Contents

1 Essentials 1

1.1 Objects . 1

1.2 Vectorization . 4

1.3 Subscripting . 5

[with positive numbers . 5

[with negative numbers . 6

[with characters . 6

[with logicals . 7

The $ operator . 8

[[. 9

Subscripted arrays . 10

[with a matrix . 11

Empty subscripts . 12

1.4 Object-Oriented Programming 13

1.5 Graphics . 15

1.6 Precedence . 16

1.7 Coercion Happens . 17

1.8 Looping . 18

1.9 Function Arguments . 19

1.10 A Model of Computation . 19

1.11 Things To Do . 21

1.12 Further Reading . 21

1.13 Quotations . 22

2 Poetics 23

2.1 Abstraction . 23

2.2 Simplicity . 25

iii

iv CONTENTS

2.3 Consistency . 27

2.4 Beauty . 29

2.5 Doing It . 30

Think safety . 31

Documentation . 34

Minimize expense . 36

2.6 Critique of S . 36

2.7 Things to Do . 37

2.8 Further Reading . 37

2.9 Quotations . 38

3 Ecology 39

3.1 Databases . 39

3.2 Object Names . 40

3.3 Divide and Conquer . 44

3.4 Environment . 45

3.5 Source Control . 49

3.6 Test Suites . 52

3.7 Time Monitoring . 58

3.8 Memory Monitoring . 60

3.9 Things to Do . 68

3.10 Further Reading . 68

3.11 Quotations . 68

4 Vocabulary 69

4.1 Efficiency . 71

4.2 The Apply Family . 75

4.3 Pedestrian . 81

4.4 Input and Output . 90

4.5 Synonyms . 94

4.6 Linguistics . 98

4.7 Numerics . 107

4.8 Randomness . 110

4.9 Graphics . 113

4.10 Statistics . 113

4.11 Under-Documented . 116

4.12 Deprecated . 117

S Poetry c©1998 Patrick J. Burns v1.0

CONTENTS v

4.13 Things to Do . 117
4.14 Further Reading . 118
4.15 Quotations . 119

5 Choppy Water 121

5.1 Identity Crisis . 121
5.2 Off the Wall . 127
5.3 Factors . 130
5.4 Things to Do . 134
5.5 Further Reading . 134
5.6 Quotations . 134

6 Debugging 135

6.1 Masking . 135
6.2 Dumping . 137
6.3 Exploring . 138
6.4 Examples . 140

the dimnames bug . 140
the print.matrix bug . 141
the trace bug . 144
the get bug . 147

6.5 Strategy . 149
6.6 Bug Reports . 150
6.7 Things to Do . 152
6.8 Further Reading . 152
6.9 Quotations . 152

7 Unix for S Programmers 153

7.1 Environment Variables . 153
7.2 Using Unix . 155
7.3 Vocabulary . 159
7.4 Things to Do . 164
7.5 Further Reading . 164
7.6 Quotations . 165

8 C for S Programmers 167

8.1 Comparison of S and C . 167
8.2 Loading Code into S . 171

S Poetry c©1998 Patrick J. Burns v1.0

vi CONTENTS

8.3 Arrays . 173

8.4 C Code for S . 175

8.5 Debugging . 179

8.6 Common C Mistakes . 181

8.7 Fortran . 182

8.8 Things to Do . 185

8.9 Further Reading . 186

8.10 Quotations . 186

9 S for S Programmers 187

9.1 Databases . 187

9.2 Utilities . 188

9.3 Zero Length Objects . 195

9.4 Modes . 201

9.5 Evaluation . 206

9.6 Object-Oriented Programming 223

9.7 Data Structures . 228

9.8 The R Language . 231

9.9 Things to Do . 232

9.10 Further Reading . 233

9.11 Quotations . 233

10 Numbers 235

10.1 Changing Base . 235

10.2 Rational Numbers . 242

10.3 Polygamma . 256

10.4 Digamma . 262

10.5 Continued Fractions . 268

10.6 Things to Do . 273

10.7 Further Reading . 274

10.8 Quotations . 274

11 Character 275

11.1 Perl . 275

11.2 Home Brew . 278

11.3 Things to Do . 282

11.4 Further Reading . 282

S Poetry c©1998 Patrick J. Burns v1.0

CONTENTS vii

11.5 Quotations . 283

12 Arrays 285

12.1 Matrices . 285

12.2 Array Functions . 287

Stable Apply . 287

Binding Arrays . 288

12.3 Things to Do . 290

12.4 Further Reading . 290

13 Formulas 291

13.1 Lazy Evaluation . 291

13.2 Manipulating Formulas . 296

13.3 Mathematical Graphs . 297

13.4 Things to Do . 318

13.5 Further Reading . 318

14 Functions 319

14.1 Numerical Integration . 319

14.2 Interpolation . 322

14.3 Genetic Algorithms . 327

14.4 Optimization via PORT . 338

Simple interface . 338

General interface . 344

14.5 Things to Do . 353

14.6 Further Reading . 353

14.7 Quotations . 354

15 Large Computations 355

15.1 Backups . 355

15.2 Reduce and Expand . 356

15.3 Things to Do . 360

15.4 Further Reading . 360

15.5 Quotations . 360

16 Esoterics 361

16.1 Magnitude . 361

16.2 Dostoevsky . 362

S Poetry c©1998 Patrick J. Burns v1.0

viii CONTENTS

16.3 Things to Do . 363
16.4 Further Reading . 363

Epilogue 365

Glossary 371

S Poetry c©1998 Patrick J. Burns v1.0

List of Tables

1.1 Precedence table for the S language, version 3. 16

8.1 Some C operators and approximate S equivalents, if any. 169
8.2 Operators with different meanings in C than in S 169
8.3 Terminology from various languages. 173
8.4 Modes within C Code. 176

ix

x LIST OF TABLES

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 1

Essentials

Five great strengths of S are its variety of objects, its vector orientation, the
power of subscripting, object-oriented programming and graphics. Each of these
is explored before turning to other matters.

A powerful and fairly unique part of S that will be addressed in later chapters
is the possibility of computing on the language. Essentially everything in S—
for instance, a call to a function—is an S object. One viewpoint is that S has
self-knowledge. This self-awareness makes a lot of things possible in S that are
not in other languages.

Of fundamental importance is that S is a language. This makes S much
more useful than if it were merely a “package” for statistics or graphics or
mathematics. Imagine if English were not a language, but merely a collection of
words that could only be used individually—a package. Then what is expressed
in this sentence is far more complex than any meaning that could be expressed
with the English package.

1.1 Objects

I briefly outline the important types of objects that exist in S. All objects possess
a length and a mode. While the length of an object is generally straightforward,
the mode is more arbitrary. The concept of mode should become clear as
examples unfold.

The most basic object is an atomic vector—often merely called a vector.
The atomic modes to speak of are—numeric, logical, character and complex. If
an object is atomic, then each element has the same mode. There is no such
thing as an atomic vector that contains both numbers and logicals.

The length of a vector is the number of elements it contains. For example,
the length of a numeric or complex vector says how many numbers are contained
in the object.

1

2 CHAPTER 1. ESSENTIALS

Although S does distinguish between double-precision floating-point num-
bers, single-precision floating-point numbers and integers, S considers this a
detail that should not concern the user. Only when you are interfacing to C or
Fortran is it an issue. In S there is no difference between writing 1 and 1.0.

In addition to the usual numbers, numeric objects may contain NAs and
Infs. There are two flavors of NA, the usual type means “missing value”. The
other NA is NaN, meaning “Not-a-Number”—these occur through mathematical
operations such as zero divided by zero, and infinity minus infinity. You can
distinguish NaNs from ordinary NAs with the is.nan function. An Inf is an
infinite value and, for numeric data, may be either positive or negative. You
may initially think that these special values are burdensome, but in fact they
eliminate a great deal of bother.

Objects of mode complex contain complex numbers. The imaginary part of
a complex number is written with an “i” at the end. An example of a complex
vector of length 2 is:

c(1+3i, 2.4-8.7i)

Complex vectors have special values analogous to those for numeric objects.

There are three logical values: TRUE, FALSE and NA. TRUE is also written T,
and similarly, FALSE can be written F.

Each element of a vector of mode character is a character string. Each
string contains an arbitrary number of characters. There is not a missing value
for mode character—often the empty string is used where a missing value is fit-
ting. The backslash is a special character—rather than meaning “backslash”, it
is the escape. For example, "\\" means “backslash” and "\n" means “newline”.
Character strings are surrounded by either double quotes or single quotes. If
double quotes are used, then a double quote within the string needs a backslash
in front of it. Likewise, a single quote needs to be escaped if the string is de-
limited by single quotes. Double quotes are always used when character vectors
are printed.

> c("single ’ quote", ’double " quote’,
+ "double \" quote", ’single \’ quote’)
[1] "single ’ quote" "double \" quote"
[3] "double \" quote" "single ’ quote"

There are a few other characters that are formed by following a backslash with
another character. A backslash followed by a triple of octal digits gives the
corresponding ASCII code.

There is one more object that is classified as atomic—NULL. Just as zero is

S Poetry c©1998 Patrick J. Burns v1.0

1.1. OBJECTS 3

a very important number, an object that stands for “nothing” is a powerful
instrument.

Since everything in an atomic vector must be of one type, they are pleasantly
simple, but limited in applicability. To put various types into a single object,
you need a list. Lists are objects of mode list and the length of a list is the
number of components it contains. Each component of a list is another S object.

For example, the first component may be a numeric vector of length 20, the
second component a character vector of length 3, and the third component a
list of length 24. (Note that Becker, Chambers and Wilks (1988, p112) use the
word “component” only when it is named, but I use it no matter what.)

The availability of lists in S is a very powerful feature—it sets it apart from
much other software. One more thing allows an even richer set of objects in S.

Each object may have a set of attributes. The attributes of an object is a list
in which each component has a name. You can imagine each S object having a
hook where the attributes list hangs—some objects have nothing there, others
have quite involved lists there.

S understands some attributes internally—the names attribute is an exam-
ple. The names of an object is a vector of character strings that has the same
length as the object. Suppose we issue the command:

jjcw <- c(stevie=4, munchkin=2)

The object named jjcw is a numeric vector of length 2. Its attributes are a list
with 1 component named "names", which is a character vector of length 2.

Arrays provide a good example of attributes. A matrix—a rectangular ar-
rangement of elements—is a two-dimensional array. The S notion of array gen-
eralizes matrices from two dimensions to an arbitrary number of dimensions. An
S array is merely a vector that has a dim attribute, and optionally a dimnames
attribute. The dim is a vector of integers; the length of the dim is the dimension
of the array, and the elements tell how many rows, columns, etc. are in the
array. The product of the elements in the dim must equal the length of the
object. Thus a matrix has a dim attribute of length 2. The dimnames provide
names along each dimension.

By adding just the dim attribute, we get an object that has a quite different
nature. You have the ability to give objects any attributes, so that they can
take on whatever nature you choose. The class attribute is the granddaddy
attribute of them all. This is what drives the object-oriented programming,
which we will come to shortly. The shapes a bright container can contain! 1

There are additional types of objects in S, many of which will be discussed
later. But we already have all the basics—mode, length and attributes define
an object.

S Poetry c©1998 Patrick J. Burns v1.0

4 CHAPTER 1. ESSENTIALS

Many objects are given names. Although there are ways of using almost
any name, generally objects are given “valid” S names. A valid name contains
only alphanumeric characters and periods. The first digit, if any, in the name
must be preceded by an alphabetic character. Capital letters are distinct from
lower-case characters. Assignment functions, like dim<- do not have “valid”
names so special measures need to be used at times when working with them.
See valid.s.name on page 279.

One particular object is .Last.value which is essentially the last value that
was not given a name. For instance, if you decide that you should have assigned
the last command to an object name, then you can do something like:

> jj <- .Last.value

1.2 Vectorization

Many S functions are vectorized, meaning that they operate on each of the
elements of a vector. For example, the command log(x) returns a vector that
is the same length as x; each element of the result is the natural logarithm of
the corresponding element in x.

Vectorization tends to be frightening to new users, and taken for granted by
experienced users. That users become unconscious of the fact that log(x) is
shorthand for a whole series of operations is testimony to the power of vector-
ization. Drinking my juices up 2

The arithmetic operators in S are vectorized. If x and y are the same length,
then x+y returns a vector in which each element is the sum of the corresponding
elements in x and y. Additionally the command x+2 returns a vector as long as
x containing two plus the corresponding element of x.

The main source of confusion is when the two vectors are not the same length
and neither has length 1. The rule is that the shorter vector is replicated to be
the length of the longer vector. Replication (as done by the rep function and
implicitly done by the arithmetic operators) means to keep re-using the elements
in order until the result is the proper length. The x+2 example is really a case
of this—the length one vector containing 2 is replicated to the length of x.

Consider the command:

x ^ (2:3)

If x is 1 long, then the result is length 2 with the first element being the square
of the element in x and the second being its cube. If x has length 2, then
the result is again length 2 with the first element being the square of the first
element of x and the second element being the cube of the second element of x.
More generally, suppose x has length 2n. Then the result is the same length as
x and element 2i of the result will be the cube of element 2i of x, and element

S Poetry c©1998 Patrick J. Burns v1.0

1.3. SUBSCRIPTING 5

2i − 1 of the result will be the square of element 2i − 1 of x. The same is true
when x has length 2n + 1, but in this case you will also get a warning that
the longer length is not an even multiple of the shorter length. Here is such a
warning with a different command:

> 1:4 + 5:1
[1] 6 6 6 6 2
Warning messages:

Length of longer object is not a multiple of the
length of the shorter object in: 1:4 + 5:1

It is often the case that something is wrong when such a warning appears.

1.3 Subscripting

The term subscripting refers to the extraction or replacement of parts of objects.
A first step in mastering S is to thoroughly understand subscripting.

There are a number of ways of subscripting. Each possibility is described
below. If the expression that contains the subscripting is on the left-hand side
of an assignment, then the values are replaced, otherwise they are merely ex-
tracted.

value <- x[sub] # extraction
x[sub] <- value # replacement

In what follows, I often speak in terms of extraction, but replacement is analo-
gous (except where noted).

[with positive numbers

A single square bracket with positive numbers extracts the elements with indices
equal to the numbers. For example, the command

state.name[1:5]

extracts the first five state names. The result is usually the length of the numeric
vector that is inside the brackets. There is no constraint on the length of the
subscripting vector or the number of times any particular index appears.

The subscripting numbers are coerced to be integer before subscripting is
attempted. The actual rule on the length of the result is that it is the length
of the integer subscripting vector after zeros have been removed. Elements that
are NA or larger than the length of the vector being subscripted create NAs (or
empty strings) in the result.

S Poetry c©1998 Patrick J. Burns v1.0

6 CHAPTER 1. ESSENTIALS

If you perform a replacement and a subscript is larger than the length of the
subscripted vector, then the vector will be as long as the largest subscript and
any elements not given a value will be NA. For example:

> jj <- 1:5
> jj[10] <- 34.4
> jj
[1] 1.0 2.0 3.0 4.0 5.0 NA NA NA NA 34.4

.

[with negative numbers

When the vector inside the square brackets contains negative numbers, then all
but the specified elements are selected. The command:

state.name[-c(1, 50)]

returns the names of all of the states except the first and the 50th.
Elements of the subscripting vector that are zero, repeated, or beyond the

length of the vector are ignored. A missing value in the subscripting vector
creates an error. If there is a mix of positive and negative subscripts, you will
get an error.

[with characters

The subscripting vector can be character, in which case it corresponds to the
names of the vector. You do not need the names to match completely, the strings
in the subscripting vector only need enough of the first part of each name so
that it is uniquely identified. It is a general feature of S that if there is a finite
population of character strings from which to pick, then you can abbreviate:

> jjcw
stevie munchkin

4 2
> jjcw["stevie"]
stevie

4
> jjcw["st"]
stevie

4

DANGER. Be careful when performing a replacement. If you do not use the
full name, then you will end up with both the original value and the new value
with the shortened name:

S Poetry c©1998 Patrick J. Burns v1.0

1.3. SUBSCRIPTING 7

> jjcw["st"] <- 6
> jjcw
stevie munchkin st

4 2 6

[with logicals

The command

x[x>0]

is an example of subscripting with a logical vector. When the subscripting
vector is logical, it is implicitly replicated to be the same length as the vector
being subscripted. The result of the subscripting operation will be as long as
the number of TRUE and NA elements in the subscripting vector. An NA in the
subscripting vector implies an NA in the result.

The naturalness and simplicity of this form of subscripting belie its great
utility. Here are a few tragically inadequate examples:

> jjseq <- 1:100
> jjeven <- rep(c(F, T), length=100)
> jjthree <- rep(c(F, F, T), length=100)
> jjseq[jjeven]
[1] 2 4 6 8 10 12 14 16 18 20 22 24
[13] 26 28 30 32 34 36 38 40 42 44 46 48
[25] 50 52 54 56 58 60 62 64 66 68 70 72
[37] 74 76 78 80 82 84 86 88 90 92 94 96
[49] 98 100
> jjseq[jjeven & jjthree] # divisible by 6
[1] 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
> jjseq[jjeven | jjthree]
[1] 2 3 4 6 8 9 10 12 14 15 16 18
[13] 20 21 22 24 26 27 28 30 32 33 34 36
[25] 38 39 40 42 44 45 46 48 50 51 52 54
[37] 56 57 58 60 62 63 64 66 68 69 70 72
[49] 74 75 76 78 80 81 82 84 86 87 88 90
[61] 92 93 94 96 98 99 100

DANGER. Here is a puzzle that you may run into at some point.

> jjwt2
dorothy harold munchkin stevie

S Poetry c©1998 Patrick J. Burns v1.0

8 CHAPTER 1. ESSENTIALS

14 15 2 4
> jjwt2[jjsubw] <- 21:22
Warning messages:

Replacement length not a multiple of number of
elements to replace in: jjwt2[jjsubw] <- 21:22

> length(jjwt2[jjsubw])
[1] 2
> length(21:22)
[1] 2

Both sides of the assignment are the same length, so we think that S must surely
be going crazy. However, once we look at the subscripting vector, the situation
starts to become clear.

> jjsubw
[1] F T NA F
> jjwt2
dorothy harold munchkin stevie

14 21 2 4

The missing value in the subscripting vector counts in extraction, but not in
replacement.

The p.replace function on page 73 contains examples that are perhaps more
enlightening. The match function can be used to perform similar operations with
subscripting—see page 71.

The $ operator

The $ operator is the most common way to extract a component from a list. On
the left is the name of the list, and on the right is the name of the component of
interest. As in subscripting with character vectors, the component name only
needs enough of the start to be uniquely identified.

> .Machine$double.eps
[1] 2.220446e-16
> .Machine$double.ep
[1] 2.220446e-16
> .Machine$double.e
NULL

You may be surprised about the result of the last command. There is more than
one component of .Machine that partially matches "double.e":

> names(.Machine)[grep("double.e", names(.Machine))]
[1] "double.eps" "double.exponent"

S Poetry c©1998 Patrick J. Burns v1.0

1.3. SUBSCRIPTING 9

In such a case, the match has to be exact or NULL is returned. It is of significance
that an error does not occur.

DANGER. The caveat about abbreviating when doing a replacement applies
here also. So don’t do it.

> jj
$abc:
[1] 1 2 3 4 5 6 7 8 9

> jj$a
[1] 1 2 3 4 5 6 7 8 9
> jj$a <- 3456
> jj
$abc:
[1] 1 2 3 4 5 6 7 8 9

$a:
[1] 3456

[[

The $ operator could be removed from the S language without reducing function-
ality. The [[operator does everything that $ does and more. The statement
.Machine$double.eps is precisely the same as .Machine[["double.eps"]].
The former is 5 characters shorter and is prettier—that’s the entire difference.

If the component has no name, then $ can not be used—you must use [[
with a numeric index.

Also use [[if the subscripting object is the name of an object that contains
what you want to subscript. The statement x$compname which is equivalent
to x[["compname"]] is distinct from x[[compname]]. When the latter is the
correct formulation, compname will be a length 1 vector that is either a positive
integer or a character string of the (start of the) name of one of the components
of x.

DANGER. Although I’ve presented the [operator as if it worked just on
atomic vectors, it in fact works on lists (and lots of other objects) also. Beware
the difference between x[[1]] and x[1]. The first gives you the first component
of x, and the second gives you a list of length 1 whose component is the first
component of x. Look at the difference:

> .Machine[[1]]

S Poetry c©1998 Patrick J. Burns v1.0

10 CHAPTER 1. ESSENTIALS

[1] 2.220446e-16
> .Machine[1]
$double.eps:
[1] 2.220446e-16

The [[operator always gets a single component (while [may get any num-
ber). A specialized use of [[allows the subscripting vector to have length more
than 1, this is discussed on page 203.

Subscripted arrays

Arrays and data frames have special subscripting capabilities—each dimension
may be subscripted independently. The subscripting vector for each dimen-
sion can be any of the forms given for [above. Note, though, that character
subscripting vectors now refer to dimnames rather than names. An example is:

state.x77[1:5, c("Area", "Pop")]

If you subscript an array and one or more dimensions are only 1 long, then
those dimensions are dropped. For example

state.x77[1:5, "Area"]

will be an ordinary vector and not a matrix. The array iris is three-dimensional,
and

iris[1:2, 1:2, 4]

will be a matrix while

iris[1:2, 2, 4]

will just be a vector. If this is not the behavior you want, then use drop=F in
the subscript. For example

iris[1:2, 2, 4, drop=F]

remains a three-dimensional array.

DANGER. Dimension dropping is a common source of intermittent bugs.
Without the drop=F the code works fine as long as the array keeps the shape
that the programmer expected, but there is trouble as soon as one of the sub-
scripted dimensions has length 1. When subscripting an array in a function
definition, it is good practice to explicitly specify whether drop should be TRUE

S Poetry c©1998 Patrick J. Burns v1.0

1.3. SUBSCRIPTING 11

or FALSE.

When subscripting an array, you can always use just a single subscripting
vector which treats the object as if it did not have dimensions. An array is a
vector with the elements wrapped into the dimensions. A matrix has consecutive
elements running down the columns. So if x is a matrix with 5 rows, then the
expression x[5:7] picks out the 5th row of the first column and the first two
rows of the second column . The first dimension of an array moves fastest and
the last dimension moves slowest. You can see the pattern by issuing a command
like:

array(1:24, 4:2)

This flexibility with subscripting can lead to bugs if commas are forgotten.
Data frames are really lists in which each component is the contents of a

column, so subscripting a data frame with a single subscripting vector is thinking
of the object as this list.

DANGER. Unlike ordinary vectors, arrays may not be assigned an out of
bounds value. Compare:

> jj <- 1:3; jj[5] <- 9; jj
> > [1] 1 2 3 NA 9
> jjm <- as.matrix(1:3); jjm[5,1] <- 9; jjm
> Error in jjm[5, 1] <- 9: Array subscript (5) out of

bounds, should be at most 3
Dumped
> [,1]
[1,] 1
[2,] 2
[3,] 3

The first works while the second creates an error. A logical reason for this dis-
crepancy is that increasing a dimension of an array is much more involved than
increasing the length of a vector. If you want to make sure that assignments
will be in bounds, you can coerce to an array.

[with a matrix

The methods of subscripting arrays that I have described have the constraint
that the result also looks like an array. But we may want to select elements that

S Poetry c©1998 Patrick J. Burns v1.0

12 CHAPTER 1. ESSENTIALS

appear “at random”. It is possible to think of the problem in terms of a single
subscripting vector, but there may be information from the array that is useful.

Here’s an example. Suppose that we want to replace the smallest value in
each row of a matrix. So we know that we want to subscript once from each
row, but there is no one column to pick.

The solution is to subscript with a matrix. A matrix can be used only as the
subscripter of an array. The number of columns of the subscripting matrix must
equal the number of dimensions in the array being subscripted, and the number
of rows of the subscripting matrix is the number of elements being subscripted.
The numbers in the subscripting matrix should be positive.

Here is a function that solves the smallest value replacement problem.

"fjjrowmin"<-
function(xmat, new=-Inf)
{

rmin <- apply(xmat, 1, function(x) order(x)[1])
xmat[cbind(1:nrow(xmat), rmin)] <- new
xmat

}

In this function rmin has an element corresponding to each row of the in-
put xmat. Each element of rmin is the position (column) within the row that
contains the smallest value in that row of xmat. A two-column matrix is then
created with cbind.

The incidmat.mathgraph function on page 312 provides another example
of this form of subscripting.

DANGER. Many versions of S do not allow a subscripting matrix to be char-
acter. This is a bug (in my opinion) since character subscripts are equivalent to
positive numeric subscripts.

Note that a logical matrix as a subscript is treated the same as if it were an
ordinary vector. Otherwise

xmat[xmat < 0] <- NA

would not work in the useful way it does.

Empty subscripts

Subscripting vectors may be missing—meaning (perhaps ironically) everything
is included as is. The most common use of this is when subscripting arrays.
The command

S Poetry c©1998 Patrick J. Burns v1.0

1.4. OBJECT-ORIENTED PROGRAMMING 13

state.x77[1:5,]

returns the first 5 rows and all of the columns of state.x77.
An empty subscript can be useful for ordinary vectors also. The command

x[] <- 0

replaces each element of x with 0, but leaves its attributes (such as names)
alone. Thus it is often different than

x <- rep(0, length(x))

DANGER. A missing subscripting vector is decidedly different than a zero
length vector such as NULL. If the subscripting vector is NULL (actually atomic
and zero length), then the result has zero length.

1.4 Object-Oriented Programming

The idea of object-oriented programming is simple, but carries a lot of weight.
Here’s the whole thing: if you told a group of people “dress for work”, then
you would expect each to put on clothes appropriate for that individual’s job.
Likewise it is possible for S objects to get dressed appropriately depending on
what class of object they are.

When a data frame is printed, it looks like a matrix. The print function
is using object-orientation to make that happen. Though the actual structure
of a data frame and a matrix is very different, the concepts of data frame and
matrix are almost identical. Thus it is appropriate that they look the same
when printed.

Object-orientation simplifies. If you want to print an object, you don’t need
to find out what type of object it is, then try to remember the proper function
to use on that type of object, then do it. You merely use print and the right
thing happens.

It can also simplify programming. Programming is simplified for the reason
above, plus it also suggests a proper ensemble of functions to write for a par-
ticular application. Furthermore, inheritance allows a very productive way to
leverage existing code.

Version 4 of S has changed some of the mechanics of how object-orientation
is achieved, but the version 3 approach works in version 4. What follows is
how version 3 does it.

Some functions are generic—print is an example—meaning that the action
depends on the type of object given as an argument. Generic functions have

S Poetry c©1998 Patrick J. Burns v1.0

14 CHAPTER 1. ESSENTIALS

one or more methods. A method is the function that is actually used when a
generic function is called. It is the "class" attribute of an argument (usually
the first argument) that determines which of the possible methods will be used.

If the object does not have a "class" attribute, then the default method
is indicated. The class of an object is a character vector. Each element of
the class is examined in turn until one matches a method. If no element of
the class matches a method, then the default method is used. (Whenever the
default method is called for and it does not exist, an error occurs.) In version
3 the name of a method is the name of the generic function followed by a
period followed by the name of the class. So the print method for data frames
(class "data.frame") is print.data.frame and the default print method is
print.default. Version 4 allows more flexible naming.

Inheritance results from a class attribute longer than 1. If an object’s class
has length 2, then the first class inherits from the second. Suppose that you
want to create a class of object that looks like a data frame, but contains a
specific type of data. Remember that the class vector goes from specific to
general, so the class could be something like:

c("my.dframe", "data.frame")

You could write methods for some generic functions, perhaps print and summary,
but not others that you plan to use, like [(subscripting), so that the data frame
method is used. The loan function presented on page 226 is almost like this.

Inheritance should be based on similarity of the structure of the objects,
not on conceptual similarity. For example, objects of class "terms" are digested
formulas (class "formula"). It would be advantageous in spots if terms inherited
from formulas since they are conceptually very similar. However, they are not
structurally very similar at all, so the decision was that there be no inheritance.

A generic print threatens ill. Since what you see is not what you get, it
means that OOP can stand for “Obfuscation-Oriented Programming” as well as
“Object-Oriented Programming”. The onus is on the programmer of the print
method to eliminate as much confusion as possible. I think there is room for
improvement in many of the print methods that now exist (including ones that
I have written).

This leads to the issue of private versus public views. Data frames are
a good example to take up. A data frame is implemented as a list with each
component containing the contents of a column. Since it is a list, I can use
lapply on it to apply a function to each column. The idea of a data frame is
that it be a rectangular arrangement of elements in which the type of element
in one column need not be the same as the elements in other columns. This
is the public view—that it looks like a matrix. The private view is that it is
implemented as a list. Data frames could be changed so that the public view
remains the same, but their implementation is different so that my lapply trick
would not work. Ideally the user of a class of objects (as opposed to the creator
of the class) should be able to use only generic functions, and hence need no

S Poetry c©1998 Patrick J. Burns v1.0

1.5. GRAPHICS 15

information about the precise structure of the object, that is, of the private
view.

S does not enforce object-orientation in any way. Objects that you create
need not have a class attribute; and you can use a method function (with few
exceptions) as an ordinary function on any objects you choose.

More on object-orientation starts on page 223.

1.5 Graphics

Graphics are an integral part of S. The topic deserves a book of its own, and is
only skimmed in this one. Here I describe the basics of how graphics work in S.

Two principles that S graphics follow is that they are device independent,
and that each graph can be built up with numerous commands. Device in-
dependence means that the same commands are used to create a graph on a
PostScript printer as on a monitor running Motif—the only difference is what
type of graphics device the user has set to listen for graphics commands. The
ability to add to plots means that complex graphics can be created easily.

A graphics device is an S function that arranges for graphics to be rendered.
For example, the postscript function makes it so that a file of PostScript
commands will result when a graphics command is given. Graphics devices are
put into one of three categories. Hard-copy devices are for creating a physical
picture; the most common is the postscript device. Window devices produce
graphics when you are running a window system on the network where S is
running; the S-PLUS motif device is an example. Finally there are terminal
devices that are used when S is run remotely. For instance, I can slouch in
front of my Macintosh at home, telnet to a Unix machine where I run S, and
get graphics on my Macintosh screen using tek4105, which performs Tektronics
emulation. There should be a “Devices” help file that informs you of graphics
devices available to you.

A graphics device has a state that is queried and modified by the par func-
tion. The state is described by a reasonably large number of graphics parameters.
Examples of graphics parameters include cex (character expansion) which gives
the size of the text relative to the standard font, and mfcol which controls the
number of plots per page of output.

Graphics functions—functions that say what to draw, as opposed to graph-
ics devices—are divided into high-level and low-level functions. High-level
functions, like plot and barplot, create an entire new figure. Low-level func-
tions (points and lines, for example) merely add to the existing figure. Some
functions have an add argument so that they can function in either capacity.
You can create your own high-level graphics function from scratch by starting
with a call to frame and then using whatever low-level functions you like.

The surface of a device (to be concrete, think of a page of hard-copy output)
is called a graphics frame, and contains a number of conceptual regions. Within

S Poetry c©1998 Patrick J. Burns v1.0

16 CHAPTER 1. ESSENTIALS

Operator Associativity Task
$ left to right component subscript

[[[left to right subscript
^ right to left exponentiation
- right to left unary minus
: none sequence

%% %whatever% left to right in-built and user-defined
* / left to right multiply and divide
+ - left to right addition and subtraction

== < > >= <= != left to right comparison
! right to left not

& | && || left to right and, or
~ none formula

<- _ <<- right to left assignment
; left to right statement end

Table 1.1: Precedence table for the S language, version 3.

the frame there are one or more figures. Surrounding the set of figures is the
outer margin; this often contains zero area. Within each figure is a plot area.
Surrounding the plot area within the figure is the margin for that figure. The
plot area is where the points in a scatter plot go. The margin contains titles,
tick labels and axis labels.

Some of the graphics functions are listed on page 113, and the par function
is discussed briefly on page 48.

1.6 Precedence

As in many languages, operators in S obey precedence. The command

6 + 8 * 9

will perform the multiplication before the addition. If you want the addition
done first, use parentheses:

(6 + 8) * 9

For the most part, the precedence in S is intuitive, the one I have the hardest
time with is the : operator. See table 1.1.

When operators have equal precedence, almost all of them associate from
left to right—that is, the leftmost operation is performed first. The exceptions
are the assignment operators <- and <<- plus exponentiation with ˆ which each
associate from right to left.

S Poetry c©1998 Patrick J. Burns v1.0

1.7. COERCION HAPPENS 17

Somewhat related to precedence is the brace. A pair of braces ({ }) bundles
a number of statements into a single statement. For example, you need to use
braces when you write a function that contains more than one statement. The
same is true in if statements and loops.

1.7 Coercion Happens

The order of the atomic modes is: logical, numeric, complex, character. This is
ordered by the amount of information possible. There are only three possible
logical values, any logical value can be represented as a numeric value, any
numeric value can be represented as a complex value, and any of the above plus
the contents of the Library of Congress can be represented by a character value.

Whenever an atomic vector is created with elements of more than one mode,
then the result will have the mode of the most general element. For example,
the mode of c(T, "cat") will be character and the mode of c(3, 4i) will be
complex.

The expression c(T, NA) implies that the mode of a solitary NA must have
mode logical. This, by the way, implies that if a single NA is used as a sub-
scripting vector, then that is a logical subscript, not a numeric one. Compare:

> c(T, NA)
[1] T NA
> c(T, as.numeric(NA))
[1] 1 NA

Although most coercions are obvious, the ones involving logicals are not.
When coercing logical to numeric or complex, a TRUE becomes 1, and a FALSE
becomes 0. A number coerced to logical is TRUE unless it is zero (or NA).

In many operations coercion occurs automatically. This is the grease that
allows S to run smoothly (and sometimes a slimy trick if the result is not what
you expected). A common use of coercion is in an expression like

if(length(x)) ...

where if is expecting a logical value but it gets a numeric one. The expression
is equivalent to

if(length(x) != 0) ...

but more compact and almost as intuitive.
A very useful coercion occurs in sum(x > 0); the result of x > 0 is a logical

vector the same length as x, but sum expects numeric or complex arguments so
it coerces the logical vector to numeric (the least general mode that it needs).
The result is the number of positive values in x.

S Poetry c©1998 Patrick J. Burns v1.0

18 CHAPTER 1. ESSENTIALS

DANGER. Notice:

> 50 < "7"
[1] T

This shows that the coercion must be to character, and that you want to think
carefully about comparisons on characters.

1.8 Looping

The only places where actual work gets done in S functions are inside calls to
.C, .Fortran or .Internal. That is, in calls to C routines, Fortran routines, or
the special routines (written in C) that understand S objects. The more directly
you get to these endpoints, the more efficient your code will be.

It is well-known to users of S that using for loops and its cousins can be
quite slow. Fundamentally, this is not the fault of the looping mechanism itself,
but that a lot of calls to S functions are being made. There is a fair amount of
overhead for each call to an S function; if a loop does hundreds or thousands of
iterations, the overhead adds up to a noticeable amount. So the general rule is
that the less that is in loops, the faster your code.

Here are three situations: no loop is used; apply, lapply or a relative is
used; a loop is used.

No loop is required if the same operation is done on each element of an
object. If you want to replace each negative element of a matrix with zero, then
you could loop over the rows, loop over the columns and change each element
individually. A faster, more direct way would be:

xmat[xmat < 0] <- 0

If the same operation is done on sections of an object, then a call to apply
or lapply or a similar function is probably a good choice. The apply function
operates on arrays, and lapply operates on lists. In older versions of S, the
apply family of functions was implemented as for loops, but version 3.2 of S-
PLUS changed them so that they are more efficient than a for loop. When
these internal apply functions are available to you, they can speed execution
substantially compared to the equivalent for loop. A section on the apply
family begins on page 75, in particular, see the sorting example on page 76.

When one iteration requires results from previous iterations, there is usually
no alternative to using a loop. Loops can be eliminated in a few special cases of
this through the use of functions like cumsum and the S-PLUS functions cumprod,
cummax, filter. When you do use a loop, try to put as little in the loop as

S Poetry c©1998 Patrick J. Burns v1.0

1.9. FUNCTION ARGUMENTS 19

possible. Also try to loop as few times as possible—sometimes there is a choice
of how to loop.

1.9 Function Arguments

Arguments to functions can be divided into required arguments and optional
arguments. The ability to have optional arguments is yet another powerful
feature of S. You can look at it either as getting more flexibility without any
complication, or as getting simplicity with no reduction of functionality.

Since not all arguments need to be given in a call to a function, there needs
to be a mechanism to match the function arguments to the arguments in the
call. Arguments may be specified by name (and since there is a limited set of
arguments for a function, the usual convention of abbreviation may be used).
Arguments may also be specified by their position in the call.

Here is the general rule for matching the call arguments to the function
arguments: First, names that match exactly are paired up. Second, names that
partially match are paired. Finally, remaining arguments in the call are matched
to the remaining arguments in the function in order. Come live with me and be
my love 3

There is a complication. The ... construct (called “ellipsis” but more
commonly “three-dots”) allows a function to have an arbitrary number of ar-
guments. There is a distinction between arguments that appear in the function
before the three-dots and those that appear after it. Arguments before the
three-dots are matched as usual—by partial name matching and/or by posi-
tion. Arguments that appear after the three-dots are matched only by full
name. All unmatched arguments go into the three-dots. Carefully written help
files indicate arguments that may only be matched by full name by placing an
equal sign after the argument name when it is described (the paste help is an
example). It does not matter where these arguments appear in the call—there
is no requirement that they be last.

1.10 A Model of Computation

It is advantageous to be able to visualize what is happening when an S function
(or any program) runs. The description I’m about to give is not accurate in
every detail, but should serve the purpose of helping you to picture what is
happening between the time you hit the return key and you get back an S
prompt. That maps are of time, not place 4

As in business, the three most important things in computing are location,
location, location. There are three types of space that are important for S
objects: disk-space, RAM and swap-space. Disk-space is where permanent S
objects live. RAM (random access memory) is where S objects that are being

S Poetry c©1998 Patrick J. Burns v1.0

20 CHAPTER 1. ESSENTIALS

used in a calculation must be. Swap-space is an extension of RAM for when
things get rough.

If we multiply the permanent dataset prim9 by 2, S first finds prim9 in disk-
space and makes a copy of it in RAM. Then the multiplication of each element
is performed. The multiplications can take place because the computer knows
the address in RAM of each element of the copy of prim9. More particularly,
the situation is probably that it knows that all of the elements are lined up side
by side, it knows how many there are, it knows how much space each one takes,
and it knows the address of the first one.

We can envision RAM as a long line of boxes, where each has an address.
At any one time some of these boxes are in use, and probably some are empty.
When S needs to bring another object into RAM, the computer finds a place for
the object and remembers the address where it was put. If there is not enough
room in RAM for the new object, then the operating system guesses about
what in RAM won’t be needed for a while, and puts that in the swap-space
(storage area). At a point when something that is in swap-space is needed, then
something else needs to be put in swap-space and what is needed is “swapped”
or “paged” into that place in RAM.

When computations are small, then everything fits in RAM and there are
no problems. If RAM fills up, then paging starts; this dramatically slows the
progress of computations, as the computer spends most of its time trying to
solve the puzzle of how to get all of the necessary ingredients into RAM at the
same time. If the computation needs more memory than RAM plus the swap-
space can hold, then the computer has to give up—sometimes the exit from this
situation is less than graceful. Here is an example of an error message from
running out of memory:

Error in 1:ll: Unable to obtain requested dynamic memory
Dumped

DANGER. Do not confuse this with trying to create an object that is larger
than the current limit:

Error in 1:ll: Trying to allocate a vector with too many
elements (40000000)

Dumped

This latter error can be fixed by increasing the object.size option. The former
error can only be solved by changing the computations or using a machine that
has more memory.

Humans tend to make a distinction between data like 2 and prim9, versus

S Poetry c©1998 Patrick J. Burns v1.0

1.11. THINGS TO DO 21

operations like multiplication. But at the RAM level, functions are also just a
collection of addresses.

We are now in a position to examine why S is so slow, or more positively,
why C is so fast. Each object in a C program is declared to be of a certain type,
so the computer knows how much space each object (or at least each element of
the object) takes. C is compiled so that it has a clear map of which addresses
it needs to visit in which order before it starts. In comparison with this, S is
on a treasure hunt—S goes to one spot, then gets a clue to where it has to go
next, where it gets a new clue, and so on.

So why doesn’t S do what C does? Flexibility. An input to an S function is
not restricted to a particular type. S functions do not care when functions that
they call are changed; the definition of functions at the time of use are used,
not the definition at the time that the calling function was created. And so on,
etcetera.

S and C should not be thought of as competitors, with C winning because it
is faster or with S winning because it is more flexible. They should be thought
of as associates, each with its own strengths, that should each be employed as
appropriate.

1.11 Things To Do

Write a function that uses each form of subscripting.

What happens when you subscript with complex numbers? Is this the most
useful behavior?

Write a command that uses at least one operator from each line of the precedence
table.

Read each S function available to you, and try to understand how it works.

1.12 Further Reading

Becker, Chambers and Wilks (1988) The New S Language is the fundamental
document for the S language. Chambers and Hastie (1992) Statistical Models
in S discusses object-orientation as it first appeared in S—Appendix A may be
of particular interest.

Spector (1994) An Introduction to S and S-Plus provides a gentler introduc-
tion to S than this book as well as covering graphics more thoroughly. Venables
and Ripley (1994, 1997) Modern Applied Statistics with S-Plus also discuss the
S language in a few chapters and then go on to provide examples of statistical
analyses in S.

S Poetry c©1998 Patrick J. Burns v1.0

22

If you are a historian or you want to see how far S has come, then you
can look at Becker and Chambers (1984) S: An Interactive Environment for
Data Analysis and Graphics; and Becker and Chambers (1985) Extending the
S System. These two books are obsolete for the purposes of computing.

1.13 Quotations

1Theodore Roethke “I Knew a Woman”
2Henry David Thoreau “I Am a Parcel of Vain Strivings Tied”
3Christopher Marlowe “The Passionate Shepherd to His Love”
4Henry Reed “Lessons of the War: Judging Distances”

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 2

Poetics

In which right thinking is advocated.

2.1 Abstraction

Abstraction is the heart of programming—all else is mere detail.

A major symptom of the need to abstract is the occurrence of redundant
code. You may immediately realize that you would rather not type the same
statements over and over again, so abstracting those lines into a function saves
your fingers. But there is a more important reason. Suppose that you decide
something needs to change in those lines—you found a bug or the scope of the
functionality changed—then the single function holds a tremendous advantage
over the repetitious code. In the repetitious case, you need to change every
occurrence (yet more typing), and there will be a bug when you miss one—and
that bug will be hard to find.

Capricious Rule 1 Whenever a group of at least three similar lines of code
occurs more than once, a function shall be written to perform the task.

The simplest form of abstraction in S is to take a task that you use one
or more command lines to do, and make that into a function. In the example
below we assume the user wants to look at the histogram and get the summary
and variance for a number of datasets.

> fjjexplore
function(x)
{

hist(x)
c(summary(x), var = var(x))

23

24 CHAPTER 2. POETICS

}
> fjjexplore(freeny.y) # a plot appears

Min. 1st Qu. Median Mean 3rd Qu. Max. var
8.791 9.045 9.314 9.306 9.591 9.794 0.09961393

Every function embodies an abstraction, some abstractions are more useful
than others. Subscripting in S is an example of powerful abstraction. Sev-
eral ways of approaching subscripting are all handled similarly—there is both
generality and simplicity.

One of the benefits of object-oriented programming is that it forces the
programmer to abstract the problem. The abstraction chosen may be good or
poor of course, but at least there is hope of avoiding an amorphous mass.

DANGER. If your code reads like a phone book, something is wrong. Change
it. This generally can be fixed by bundling like objects together and possibly
vectorizing.

A particular type of abstraction is indirection. An example is the lib.loc
object that states the directories where S libraries may be found. The library
function is not limited to looking for libraries in one set place, instead there is
a two-step process which is flexible and convenient.

The poet.dyn.load function is another example of indirection.

"poet.dyn.load"<-
function(fname)
{

if(!exists("Poet.Location"))
stop("set Poet.Location to poetry directory")

real.loc <- paste(Poet.Location, fname, sep = "/")
if(exists("dyn.load"))

ans <- dyn.load(real.loc)
else ans <- dyn.load2(real.loc)
invisible(ans)

}

There are object files that need to be loaded to use several of the functions
described in this book. In order to be loaded, the directory where the files live
needs to be known, which is going to be different for each installation. The
poet.dyn.load function provides indirection for the location of the object files.
It also allows an easy way of changing between dyn.load and dyn.load2 de-
pending on the availability of the functions in specific versions—another instance
of indirection.

S Poetry c©1998 Patrick J. Burns v1.0

2.2. SIMPLICITY 25

2.2 Simplicity

Programming Perl lists three virtues of programmers: laziness, impatience and
hubris.

Being a lazy person, I think of laziness as the most important of the three.
Unix Power Tools credits Programming Perl as describing laziness as the “qual-
ity that makes you go to great effort to reduce overall energy expenditure.” Jon
Bentley in Programming Pearls takes a slightly different tack, “Good program-
mers are a little bit lazy: they sit back and wait for an insight rather than
rushing forward with their first idea.”

Another good way to be lazy is to prove the feasibility of a large project
before you spend a lot of time on programming details. Look for critical points
that might not be doable within the given constraints—show-stoppers—and
solve those first. A likely example is that speed may not be adequate—moving
strategic pieces of the code from S to C can save the day. When looking for
show-stoppers, you are concentrating on the weakest portions of your plan. Even
if the original plan appears feasible, you may find a more streamlined attack on
the problem.

Impatience is useful to make computers do more work than we do (and to
make them do all the boring stuff). For instance, it is a virtue to write a small
function to do something that you are repeatedly doing on the command line.

Hubris forces the programmer to produce quality solutions, and to attempt
the impossible.

I would like to add another virtue to the stack: simple-mindedness. Simple-
tons avoid whatever is complex. Functions that are simple are easily used and
easily adapted. Most importantly, simple functions are less often broken.

Capricious Rule 1 No function shall contain more than 37 lines of code.

I must confess that I have written a couple 500-line functions of which I am
reasonably proud, but these are exceptional cases in which a lot must be done.

The absolutely, positively most splendiferous mistake of beginning program-
mers is to try to do too much in a single function. Think in terms of building
blocks. Consider all of the things that need to be done to achieve your goal,
and look for ways to break it up into subtasks. And it grew both day and night,
Till it bore an apple bright. 5

But why? Because small functions are easier to understand. Because the
subfunctions that you create are going to be useful again. Because a long,
involved function is hard to adapt to a slightly different purpose.

Each function should have a contract—it accepts certain inputs, and agrees
to produce a specific output. This is the core idea of “modular programming”—
that the code can be broken into pieces that can each be verified to do what
they are supposed to. If all the pieces work, then the whole system should work.

S Poetry c©1998 Patrick J. Burns v1.0

26 CHAPTER 2. POETICS

When changes are made, then testing can be focused near the changes.

A very important thing not to do is write functions with side effects. Specif-
ically, do not write functions that create or modify objects. Instead collect all
of the newly created information (probably in a list), and return it from the
function. There has been a proposal to ban the <<- operator to make it a little
less convenient to change objects behind the scenes; I second the motion. Side
effects destroy the transparency of a set of functions, making it more likely that
the user will make assumptions that are not true.

On the other end of the same stick, avoid using global variables as much as
possible. It is much more transparent when all necessary variables are passed
in as arguments. It is also likely that the function will be much more versatile.

Data hiding is another technique to achieve simplicity. The most obvious
example of data hiding is some of the print methods in S. For example, an lm
object represents a linear regression. The object contains a number of compo-
nents that are used in prediction and so on, yet its printed form is merely a
terse summary of what the object represents. Similarly details can be hidden
from functions.

Although the missing function is a useful tool, it should be used only when
necessary because it can complicate programming. Let’s look at two functions
that do the same thing, but in different ways.

"fjjmiss1" <-
function(x, y)
{

if(missing(y)) {
... }

...
}

"fjjmiss2" <-
function(x, y=NULL)
{

if(is.null(y)) {
... }

...
}

Assuming that the ellipses in the two functions are the same, the results will be
the same. Actually this is not quite true—if NULL is a valid input for y, then the
two functions are different. Looking at these functions in isolation, fjjmiss1
has the advantage since it is more general.

S Poetry c©1998 Patrick J. Burns v1.0

2.3. CONSISTENCY 27

When we consider these functions being called by other functions, the picture
changes. A function that calls fjjmiss1 needs an if statement that depends on
whether or not y is to be missing. A call to fjjmiss2 has no such complication.
You not only want each function to be as simple as possible, you want the
interaction between functions to be smooth as well. An appropriate use of
missing is in the [.stack function on page 228.

Unlike poetry in a natural language where there is rhyme, meter and so
on, there are few constraints when writing in S. An exception is the naming of
function arguments and list components. We desire simplicity of use as well as
simplicity of construction, so it is nice to have argument and component names
that can be abbreviated effectively. All of the names should be distinguish-
able by the first few letters—a sort of anti-alliteration—while maintaining clear
identification of the meaning.

Capricious Rule 1 The first two letters of an argument name shall distin-
guish it from all of the other argument names.

While we are on the subject of virtues, there is yet a fifth to be had—
distrust. Distrust everyone’s programming, especially your own. As people gain
experience with computing this tends to be a natural occurrence. However, it
is better to cultivate distrust actively than to suffer bouts of depression due to
disappointment.

2.3 Consistency

If you believe that consistency is the hobgoblin of small minds, then be small-
minded when programming. Consistency makes it fast for users to learn the
system, keeps some bugs from getting into the code, and makes it easier to fix
bugs that do appear. As Robert Frost said in “The Figure a Poem Makes”,
“No surprise for the writer, no surprise for the reader.”

Think of consistency as abstraction on a more diffuse scale. If we always
use the same argument name for the same thing, we really have abstracted the
concept of that argument.

Follow naming conventions to maintain consistency. Argument names in
S are traditionally in lower case. However, an exception is when the function
takes a function as an argument along with an arbitrary number of arguments
for that function. The arguments for the function accepting a function should
have its arguments all in capitals. For example, the arguments to lapply are:

X, FUN, ...

S Poetry c©1998 Patrick J. Burns v1.0

28 CHAPTER 2. POETICS

The reason these arguments are capitalized is so their names will not conflict
with argument names for the function passed in as FUN. You can make a call
like:

lapply(as.list(seq(0,.1, by=.01)), mean, x=prim9)

The X of lapply and the x of mean (in this case set to be prim9) can peace-
fully coexist. Unfortunately there are several functions that take functions as
arguments that do not adhere to this convention. An example of using this
convention is the line.integral function (page 320). An alternative method
of handling the problem is given in the genopt function (page 331).

Version 3 of S forces a naming convention on methods for generic functions.
Version 4 does not enforce the convention, but it is probably wise not to stray
from it without reason. Object names tend to be in lower case, you don’t need
to follow this but you should decide what you are saying when you capitalize.

Objects that live in database 0 usually start with a dot and have the next
letter capitalized.

Give similar arguments in different functions the same name. For example
iter.max is used in several functions to specify the maximum number of iter-
ations allowed. Some other functions use niter for the same purpose. I think
iter.max is a better choice because it more clearly states its meaning, and vari-
ables that start with “n” are more common than those starting with “i”. Note
that S is not confused when the same name is used in nested functions.

Variables within functions should have clearly meaningful names. It is bad
practice to use the same name for more than one meaning within the function
(an exception can be made to save space when dealing with large objects).

Avoid names that can be easily confused. For example, nnn and nnnn would
be better named n3 and n4.

Capricious Rule 1 No variable shall be named tmp.

All variables are temporary so tmp is not descriptive. Thus it is tempting to
have it stand for more than one thing in a single function.

On a Horse Who Bit a Clergyman

The steed bit his master;
How came this to pass?

He heard the good pastor
Say, “All flesh is grass.”

anonymous
(Eighteenth Century)

S Poetry c©1998 Patrick J. Burns v1.0

2.4. BEAUTY 29

Object-oriented programming is not enforced by S, and if object-orientation
is used, there are few constraints on its form. We get more flexibility at the
possible expense of consistency. It is the prgrammer’s responsibility to maintain
consistency.

2.4 Beauty

Once you have a simple, effectively abstracted function that conforms to all
known conventions, you are probably approaching the beautiful.

when the world is mud-
luscious 6

One of the most beautiful functions in S is rep. This function does a lot
with three straightforward arguments. The times argument is what makes it
transcend mere utility. In its most common use, times says how many repli-
cations of the object we want. But turning that on its side in the light of
vectorization, we can also give a vector for times that tells how many times to
replicate each element in turn. Thus we can give commands like:

> rep(1:5, rep(2, 5))
[1] 1 1 2 2 3 3 4 4 5 5
> rep(1:5, 4:0)
[1] 1 1 1 1 2 2 2 3 3 4

Since computers are less amused by ambiguity than we, it should be the case
that these two meanings for times meet up nicely for length one objects, and
they do.

The length argument states the length that the answer is to be.

> rep(1:5, len=4)
[1] 1 2 3 4
> rep(1:5, len=7)
[1] 1 2 3 4 5 1 2

DANGER. The most common bug when using rep is to forget to name the
length argument in the call, so that it is interpreted to be the times argument.

> rep(1:5, 2)
[1] 1 2 3 4 5 1 2 3 4 5
> rep(1:5, leng=2)
[1] 1 2

S Poetry c©1998 Patrick J. Burns v1.0

30 CHAPTER 2. POETICS

rep could have been written so that it did less, or it could have had a bunch
more arguments that made the whole thing complicated. Instead it holds to a
middle ground of both power and simplicity. This brings to mind the following
rule.

Capricious Rule 1 All functions shall have three to seven arguments.

Too few arguments means that the abstraction embodied by the function is
not general enough. Too many arguments means that too much is done and
hence it is too complicated.

Arbitrary limits are ugly and should be avoided. S does a good job of not
having them. There are only three places that I can think of where they exist.
The number of arguments that can be given to a C or Fortran routine through
.C or .Fortran is limited to some arbitrary number (about 50 in most versions
of S-PLUS, I think). The number of explanatory variables that can be given
to the leaps function is limited to something like 31. The maximum order of
the polynomial solved by polyroot is 48. If the solution you have to a problem
contains an arbitrary limit, your pride (remember hubris?) should get in the
way of taking it seriously. Disturbed some rythm, old and of vast importance 7

The final flourish of creating a beautiful function is to give it a good name.
The name should clearly indicate the functionality. The number of characters
in the name should be inversely proportional to the number of times it will be
typed—a function that is typed only a few times a month can afford to have
a longer name than one typed several times a day. A descriptive name for an
infrequently used function also makes it easier to find. Avoid using good, general
names (like maybe fly or run) for inferior functions.

2.5 Doing It

Much has been made of “top-down” programming. It is sometimes professed
that the way to approach a programming task is to specify the main structure
and how everything relates to its neighbors in advance, only details are left to
be worked out. I suspect that there are few worlds born whole as out of Zeus’
head, but if you run across one, by all means take advantage of it.

In my experience it is more likely that the problem is only partially known
(or knowable) in advance. Experimentation provides insight into what the real
question is, and how wide of a net can be cast. As more is learned, the proper
structure starts to show itself. If “top-down” is taken to mean think before you
type, then I like it; but if taken to the extreme, you may paint yourself into
some corners. An apt slogan is one seen on bumperstickers: “Think Globally,
Act Locally.”

A good image for code generation is one of punctuated evolution. There are
short intervals of massive changes interspersed with long periods of almost no

S Poetry c©1998 Patrick J. Burns v1.0

2.5. DOING IT 31

change at all. The periods of change can be spurred either by new needs or by
a better structure becoming evident.

In many of the examples in this book two or more versions of a function are
given, with a later version being (hopefully) an improvement of the preceeding
version. Obviously the aim is not to produce examples of poor coding for you
to emulate. The main reason is to drive home that revising code should be
standard practice. Write an initial version, play with it a little, then fix the
limitations that you’ve found—always trying to move toward simpler and more
general.

Unlike living creatures, computer programs unfortunately often need to ex-
hibit backward-compatibility. This is a dark cloud over beautiful programming—
either consistency, non-redundancy or backward-compatibility has to give way.
If the program is not wide-spread, then breaking the compatibility by forcing
the use of the new structure is best. If fame has spread though, the choices
tend to be reduced to retaining the same interaction (though internals might
change), or having two systems that do basically the same thing.

This is a caution to get it right the first time. If you have a significant piece
of code, give it to a few people to test and comment on. Do not sell it. Do not
propagate it over the internet (do as I say, not as I do). Think about it, hone
it until it is right, then prosyletize.

There is an adage (never followed) that software should be written once,
then thrown completely away and rewritten. Nobody ever does it because it
seems extraordinarily wasteful, but I’m sure it is closer to optimal than how
software actually is written.

In the midst of all of this pondering on programming etiquette, truth may
break in. It is seldom the case that programming is performed with no con-
straints. As a deadline worth millions looms, there may not be time to create
perfect functions. Take the gold and tidy your code later. So was I once myself
a swinger of birches. 8

Think safety

Many building construction sites have the prominent sign “THINK SAFETY”.
There should be such a sign whereever software is under construction.

Keep in mind that code evolves and adapts. It is not enough to get it right
for this one use—think also of how minor changes to the code might introduce
bugs. With trembling care, knowing that most things break; 9

For example, the length of a vector may be 5 in a function, so you can use 5
as the length of the vector—hard-code the value—but someone who changes the
code and uses a different length vector may not find all of the locations where
5 means the length of this vector. It is safer to assign a name to the length of
the vector.

S Poetry c©1998 Patrick J. Burns v1.0

32 CHAPTER 2. POETICS

If you are adding arguments to a function that is already in use, then put
the new arguments at the end. If you do this, then calls based on the previous
definition of the function will continue to work properly.

If the use of a function critically depends on the value of a default, then
explicitly give the default for that argument. A common fragment of code is

if(any(is.na(match(x, y))))

which depends on the default value of the nomatch argument to match. If
someone decides to create their own version of match with the default value of
nomatch changed to 0, say, then the above construction will not work. Safer
would be:

if(any(is.na(match(x, y, nomatch=NA)))

DANGER. Do not change the match function’s default value of nomatch be-
cause there are numerous places that do not use the safe approach.

Here is an example of where thinking of safety would have helped.

> jjpbx
a b

1 1 -0.7710749
2 2 1.3230554
3 3 -1.0032299
> class(jjpbx)
[1] "matrix"
> jjpbx[1,]
a b
1 -0.7710749
> dim(.Last.value)
NULL

It seems perfectly natural to me that we may want an object of class matrix
to remain a matrix when subscripted—that is, for the default value of the drop
argument in subscripting to be FALSE. Here is a method to do that.

"[.matrix"<-
function(x, i, j, drop = F)
{

cl <- class(x)
x <- unclass(x)
ans <- x[i, j, drop = drop]

S Poetry c©1998 Patrick J. Burns v1.0

2.5. DOING IT 33

avoid NULL matrices
if(length(dim(ans)))

class(ans) <- cl
ans

}

Subscripting indeed works, but now the drop function doesn’t work on these
objects.

> jjone.d <- jjpbx[1,]
> dim(jjone.d)
[1] 1 2
> dim(drop(jjone.d))
[1] 1 2

Adding the seven characters ,drop=T to the definition of drop fixes the problem:

"drop"<-
function(x)
{

n <- length(dim(x))
if(n == 0)

return(x)
eval(parse(text = paste("x[", paste(rep(",", n -

1), collapse = ""), ",drop=T]")))
}
> dim(drop(jjone.d))
NULL

This will cause drop to fail on objects that do not have a drop argument in
subscripting but do have a dim—that seems quite acceptable.

Put error messages where appropriate (using the stop function). This is
harder than may be naively thought. You do not want to unduly clutter or
weigh down functions with excessive error checking. On the other hand, you
want errors when they do occur to produce a message that will make the cause
of the problem clear. In general, low-level functions that aren’t intended to be
called directly by the user should have few error checks, functions called a lot
by inexperienced users should be heavily checked.

Most important is that a function should never be allowed to give a wrong
answer. Better a totally undecipherable error or the computer crash than two
times two equal five.

Here is how I decide where to put error checks:

• If the problem will result in a wrong answer, put in a check (and look around
for more of the same).

S Poetry c©1998 Patrick J. Burns v1.0

34 CHAPTER 2. POETICS

• If the problem will result in an error farther on and the error condition will
be vague or misleading, then put in an error check.

• If the problem will create a reasonable error elsewhere but this is likely to be
used by novices, then put in an error check.

Implicit in the list above is that thought has been put into where errors come
from. Such thought is useful not only for placing error messages, but also to
eliminate bugs.

Once you know where you want an error message, you need to decide what it
is to say. I believe in short messages (so the user will actually read it). However,
clarity and accuracy should take precedence over brevity.

Documentation

There are three forms of documentation that you can write for your S code.
Help files, and comments in the code are two types. The other (which I term
prose documentation) is an explanation that might appear as a user’s manual.
Prose documentation would tend to show how to use a group of functions in
a coordinated manner as well as motivating why one would want to use the
functionality.

I think writing a help file for a function is an integral part of writing the
function. (In version 4 the documentation is a part of the S object rather than
a separate file, the principles remain the same.) Writing the documentation
clarifies how the function fits with others, and suggests tests for bugs as well as
being a useful product in its own right. You can not possibly know that your
function is written as well as possible until you have written a thorough help
file for it.

When writing a help file, it is a good goal to write it so that a person without
a computer and with just the help files can confidently write correct programs.
(This is a dreadful way to program, but it is a good image to have when writing
help files.)

The prompt function produces a file that is a template of the help file you
want. It fills in many of the items of interest and marks the spots where you
need to put in information.

Here are some things to consider when writing a help file:

• Describe each argument fully. There are a few possibilities:

• The description is clear. Fine. You need a measure for what “clear”
means—think of a reasonably intelligent person who is completely unin-
formed about the subject. The description should include the type of
object expected: “integer giving the number of . . .” is preferable to “num-
ber of . . .”; “matrix of explanatory data”, not “explanatory data”. This

S Poetry c©1998 Patrick J. Burns v1.0

2.5. DOING IT 35

gives more opportunity to ponder what happens if the input is different
from what is expected, as well as being more explicit for the user.

• The description is clear, but does not match what the function actu-
ally does. Change the function or the description, as appropriate. For
example, you might have a statement like “numerical array. When three-
dimensional, then ...” I often find that I don’t know what the “then”
clause is, that I know what it should be but I’m not sure the function
does that, or that the function does something more sensible than my de-
scription. This is a very expedient way to force me to think through what
the function should be doing, to debug the function, and to document it
all in one step.

• The argument is hard to explain. Rethink. If the argument can’t be
explained, then surely users will get it wrong, and more likely the whole
thing is ill-defined. An ill-conceived argument is a potent source of bugs.

• Are the arguments in an appropriate order? Required arguments should
be first. The order should match that of functions with similar arguments.
In general, the most used arguments should be near the front. Do all of
them have good names that are consistent with other function arguments?

• Explain the output fully. While you do this, wonder whether everything
relevant is returned, and nothing but.

• If there are side effects, spell them out.

• Provide examples that demonstrate the use and usefulness of the function. If
possible, give examples that the user can copy directly to get output—the in-
built datasets are expedient for this. This is the section that is likely to be the
most informative if done properly. No matter how clear and concise you think
your explanations are, a good example will better answer the user’s questions.

• State all else that would be useful to the user. This might include references
to literature, details of the computing algorithm, and explanation of how to use
the function.

• A most important part of a help file is the BUGS section. I realize that it’s
fashionable to pretend that bugs do not exist, but those who claim to have no
bugs in their code are either fools or liars. Many functions as they are written
contain known bugs, even if these are just limitations on what they might be
expected to do. Write these down while they are fresh in your mind so that
users are warned, and you have a clear map of what remains to be done to the
function.

My feeling on comments in code is that there should be some, but they
should tend to be sparse. Put in comments when you are doing something
clever—it is very easy to forget how clever you are. Also add comments if you

S Poetry c©1998 Patrick J. Burns v1.0

36 CHAPTER 2. POETICS

are working around a bug. Explain the bug fully so that it will be clear when
the workaround can be removed. This is important—I have several comments
scattered through my code that inform of a workaround, but do not contain
enough information to know when the workaround can be abandoned.

If your code needs a lot of commenting to make it understandable, then you
should consider rewriting the code so it is simpler rather than adding comments.

Minimize expense

A programmer’s job is to minimize expense. Often this optimization is too
narrowly defined as minimizing the memory and time usage of the code as it
is run. Part of the reason for focusing on these is that they are the easiest to
measure.

The actual problem also includes the time to program the solution, the time
to train users, the time to maintain the code, the time to adapt the code to
new uses, and so on. It is hard to overestimate the time required to maintain
code, it is an important component of the expense. Remember that humans are
expensive (and easily frustrated or bored), while computers get cheaper all the
time.

2.6 Critique of S

I give S high marks for having effective abstractions and providing the ability to
create further abstractions. It allows and encourages a great deal of simplicity.
On the whole it is a very poetic language.

S does have its faults, though. One is that the name-space is easily cluttered.
Although you can specify that a particular name should come from a specific
place, it is not a very convenient operation. I don’t see any solution to this, you
merely need to be careful about naming objects.

Another weakness of S is that it has a lot of inconsistencies and redundancies.
Almost all of this is because S has changed over the years, and there has been
the desire to have as much backward-compatibility as possible. So some things
that should logically be object-oriented are not, some functionality is duplicated,
some functions use formulas while similar functions do not, and so on. There
are also some function arguments that have different names in different places.
All of this can frustrate a new user. However, all of the inconsistency in S is on
the surface—the underlying language is incredibly consistent and simple.

S Poetry c©1998 Patrick J. Burns v1.0

2.7. THINGS TO DO 37

2.7 Things to Do

Take a complicated function (preferably one of your own) and abstract the
portions of what it does into several subfunctions. Repeat this on the same
function as many times as you can, performing the abstraction differently each
time.

Put comments into your functions so that they are completely explained. Then
revise the functions so that as much commenting as possible can be eliminated.

Write help for each of your important objects. It can be very useful to document
non-functions as well as functions.

Find a beautiful S function (rep is not an allowable answer). What is good
about it?

What would be good functionality for a function named fly?

For each S function available to you, decide how to make it better.

2.8 Further Reading

The books Programming Pearls and More Programming Pearls by Jon Bentley
are very good at encouraging good programming.

The Elements of Programming Style by Kernighan and Plauger has much
wisdom that is still applicable, even though it was written in the late Paleolithic.
Here is a sample: “The fact that a four line comment is needed to explain what
is going on should be enough to rewrite the code. An even better reason is that
the comment is wrong.” They often present some published code and then show
how it can be improved. A wonderful illustration of their spirit is that some
of the examples of poor programming in the second edition are their code from
the first edition.

Structure and Interpretation of Computer Programs by Abelson, Sussman
and Sussman has abstraction as its main theme. It uses a form of Lisp as its
language of choice—most of the examples could be translated into S without
undue contortion.

When real conceptual trouble strikes, I occasionally pull out How to Solve It
by George Polya. This book talks about how to solve mathematical problems,
but the techniques are suitable for any problem solving. An example of his
wisdom is that it is often useful to picture what a solution would look like, and
then work backwards from there. The most memorable part of the book for me
is his rules of style, which I paraphrase:

Rule of Style 1 If you have nothing to say, then don’t say it.

S Poetry c©1998 Patrick J. Burns v1.0

38

Rule of Style 2 If by some miracle you have two things to say, say one
thing and then the other.

2.9 Quotations

5William Blake “A Poison Tree”
6e. e. cummings “In Just-”
7Theodore Roethke “Moss-Gathering”
8Robert Frost “Birches”
9Edwin Arlington Robinson “Mr. Flood’s Party”

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 3

Ecology

In which peaceful relations are encouraged.

This chapter starts with topics concerned with the use of S in general—
databases and their organization, naming objects. Then it turns to subjects
more directly related to programming.

3.1 Databases

S has a search list where it looks for all of the objects that it needs. (A
better name would be “search path” since it is not an S list, but the usage is
established.) You can see what databases are currently on the search list with
the command:

search()

The first database on the list is called the working database, and this is where
assignments are written (it is possible to make assignments elsewhere). You need
to have write permission for the working database in order to have S happy with
you.

When S needs to find an object, then it looks in each database in the search
list in turn. Once it finds an object with the correct name (and possibly the
correct mode), it uses that object. So an object named x that lives in database
2 will mask an object named x that lives in database 3. This is a simplified
version of how S searches for objects, for a more truthful explanation, see page
210.

You can add to the search list with the attach function. Typically you give
it a character string which names a directory containing S objects:

attach("../other_directory/.Data")

39

40 CHAPTER 3. ECOLOGY

This will place the new database in position 2, but an optional argument allows
you to select where in the search list the new one is to fall.

You can attach lists and data frames to serve as databases. The columns
of data frames and the named components of lists are the objects within the
database.

> x1
Error: Object "x1" not found
> jjx <- list(x1=1:6, x2=letters[1:9])
> attach(jjx)
> x1
[1] 1 2 3 4 5 6

This can be an excellent way to organize computation in some situations. I
don’t recommend using a data frame or a list as the working database, however.

To remove databases from the search list, use detach. Usually you give
detach the number of the database that you want to disappear.

Libraries are mildly special directories of S objects. To see what libraries
are available to you, do:

library()

To get some more information about a library, you can do a command like:

library(help="examples")

and do

library(examples)

to attach the library. In version 3 of S the only real difference between a library
and an ordinary directory of S objects is that the .First.lib function will
perform some startup actions when the library is attached. Also the user does
not need to know the path of the directory of functions. If you want to add
libraries of your own, then S-PLUS allows you to create a lib.loc object that
is a character vector of the pathnames of the directories where libraries may be
found.

DANGER. In (most) versions of S, there are some superficial bugs when
lib.loc is set. I don’t know of any that are harmful.

3.2 Object Names

When I first came to S, I was thrilled that the objects I created remained
permanently—even after I quit S. This was in contrast to systems where I needed

S Poetry c©1998 Patrick J. Burns v1.0

3.2. OBJECT NAMES 41

to explicitly state what I wanted to save before quitting. By the time my
directory contained a few hundred objects, I began to learn the price to be paid
for this convenience. Wouldn’t it be nice to be able to discover the name of any
particular object you want, or to be able to quickly decide what to throw away
when the system administrator yells at you for hogging all of the disk-space?
Look on my works, ye Mighty, and despair! 10

The types of objects that you create can be divided into five categories:
permanent functions, permanent data, modified system functions, temporary
functions and temporary data. Some people might want to add a category
of derived data, to represent data that can be reproduced, but at some cost.
Permanent functions are functions that you have written that you will continue
to want to use. Likewise, permanent data are objects other than functions that
you want to keep long-term. What I call modified system functions are those
that are similar to an in-built function, but does something slightly different.
For example, I have a function called p.unix.time which is basically the same
as unix.time, except that it returns 3 numbers: the total computer time, the
clock time and the memory size. Temporary objects are those that will not
affect you adversely should they disappear.

With proper naming conventions for your objects, you can ease the burden
of object proliferation. A convention for temporary objects is most important.
I start the name of a temporary function with fjj and start the name of other
temporary objects with jj. Here’s my reasoning: jj is easy to type, it doesn’t
appear in the words of any natural language I’m likely to learn soon, it seldom
appears in abbreviations, and it can be thought of as deriving from “junk”.

Other naming conventions that I’ve seen include starting the object name
with foo, tmp or junk, or using triples of letters. The problem with the first
three is that it is conceivable that the name of an object you want to keep may
sneak into the convention. The problem with the last is that it is not convenient
to list them.

I find it very useful to differentiate between temporary functions and other
temporary objects. Functions are small so throwing them away buys you very
little disk-space. Functions also tend to have a longer useful life than data—I
can read a function and know what it does, but a matrix of numbers even with
distinguishing dimnames soon becomes a mystery.

If I want to list all of my temporary objects, I can say:

objects(pat="jj")

To exclude the temporary functions, I say:

objects(pat="^jj")

(The “hat” symbol indicates the beginning of a word.) I can remove all of these
with

remove(objects(pat="^jj"))

S Poetry c©1998 Patrick J. Burns v1.0

42 CHAPTER 3. ECOLOGY

This brings us to an advertisement for some form of command line editing.
If you typed the last statement but missed typing the second “j”, then you
might well be sorry. A safer approach is to look at the result of the objects
command, and then wrap the call to remove around the same call to objects.
Command line editing is the ability to recall past commands, and to re-execute
them, possibly after moodifying the command. This means that text editing is
involved. On Unix there are essentially two choices for an editor—emacs or vi.
If you know neither, then learn emacs. For command line editing in S, the best

method is to use S-mode in emacs. Admirers of S-mode are many and fervent.
If you already know vi well and you have S-PLUS, then an alternative is to use
the e flag when you start S-PLUS:

% Splus -e

You can then hit the “escape” key, go back into past commands and edit them.

A more complicated removal might be handled like:

jj <- objects(pat="^jj")
jj <- jj[-c(4, 9, 138)]
remove(jj)

Note that jj may be one of the objects removed. That’s okay—suicide is al-
lowed.

In S-PLUS, objects.summary reports various information on objects:

> objects.summary(pat="jjm", what=c("data.class",
+ "storage.mode", "extent"))

data.class storage.mode extent
fjjmem1 function function 3
fjjmem2 function function 3
fjjmem3 function function 3
fjjmem4 function function 3

jjm matrix integer 3 x 1
jjmat matrix double 5 x 5

In the example above we ask for objects in the working database (the default)
that have names containing “jjm”, and we do not want the dataset date to be
part of the output. Below we want to get all of the functions in the working
database (and nothing else), and sort them by date:

objects.summary(mode="function", order="dataset.date")

It is good to have a naming convention for modified system functions. A
method I’ve seen is to append f. to the system name, f.matrix for example.

S Poetry c©1998 Patrick J. Burns v1.0

3.2. OBJECT NAMES 43

This seems fine if you are an isolated user. However, if you are in a group of S
users and functions are likely to be shared, elaboration is politic. Consider the
situation of two or three f.matrix functions in a group. Person x uses function
fy written by person y, function fy uses the f.matrix written by y, but fy sees
the f.matrix written by x when x uses fy (got that?). The worst type of error
might occur—everything looks fine, but the answer is wrong.

A solution is for each individual to have their own prefix to use. We would
have x.matrix and y.matrix instead of two f.matrix functions. This also
makes it easier to direct questions and comments to the right person.

The diffmask function will tell you if and how two objects of the same name
differ:

"diffmask"<-
function(x, old = loc[2], new = loc[1])
{

if(!is.character(x) || length(x) > 1)
x <- deparse(substitute(x))

loc <- find(x, num = T)
if(any(is.na(c(old, new))))

stop("need two locations for object")
if(is.numeric(old))

oldlab <- old
else oldlab <- "old"
if(is.numeric(new))

newlab <- new
else newlab <- "new"
filenames <- tempfile(paste("database", c(

oldlab, newlab), "", sep = "."))
on.exit(unlink(filenames))
dput(get(x, where = old), filenames[1])
dput(get(x, where = new), filenames[2])
unix(paste("diff -c ", filenames[1], filenames[

2]), out = F)
}

CODE NOTE. If both old and new are given, then there is no need to do the
find command. Taking that into account, the line could be changed to:

if(nargs() < 3)
loc <- find(x, num = T)

This uses find unless all three arguments are passed into the call. In this case,
the probability that all three arguments will be given is infinitesimally small
and the find call is not expensive, so I opted not to do this. However, there
are circumstances in which it is decidedly valuable to avoid computations.

S Poetry c©1998 Patrick J. Burns v1.0

44 CHAPTER 3. ECOLOGY

I find diffmask quite useful—I wrote it for myself, not the book. Often I
have a local version of a function that is also somewhere else on the search list
because I am modifying or debugging the function. I use diffmask to see the
current modifications.

3.3 Divide and Conquer

No matter how organized your naming convention, there comes a time of too
much. The most common solution is to create separate S data directories for
the various projects you work on. Here is a Unix script to set up an S directory
in the current directory.

mkdir .Data
mkdir .Data/.Help
you may need to change the next line
Splus < $HOME/pS/dotFirst.q

Assuming that the script is called Shere and is executable, then you merely
need to go to the directory where you want to run S, and give the command
Shere to Unix. After which you can use the new .Data by starting S from the
directory.

The dotFirst.q file contains a solution to the main problem with dividing
your S objects into separate directories. Almost everyone has a set of general
functions that they always want to have available. You don’t want to copy
the same functions into each directory (bad, bad, bad), but you can have one
directory where your general functions live, and always attach that directory as
S starts.

You may be wondering why I dislike the idea of copying functions around.
This is the redundancy problem once again, but on a different scale. Suppose
that you do copy a function into several different directories. Now suppose that
you discover a bug in the function as you are using it in one of the directo-
ries. You will fix the bug where you are working, but—barring extraordinary
circumstances—you will not change it in all of the other directories. It is likely
that you will need to rediscover the bug in one or two more directories before
the bug is extinct. Even without bugs, extra features may be added to some
versions of the function so that you end up with several similar functions that
are non-trivial to get back into sync with each other.

A .First function is used to perform tasks as an S session starts. Just
before S gives you the first prompt of the session, it checks to see if there is a
.First function in the working database, and if so, evaluates a call to it. (There
is also a .Last, but I haven’t yet discovered a good use for it.) Here is what
that dotFirst.q referred to in Shere might look like:

.First <-

S Poetry c©1998 Patrick J. Burns v1.0

3.4. ENVIRONMENT 45

function()
{

options(error = dump.frames, object.size =
20000000)

attach("../pS/dotFunctions")
cat("attaching dotFunctions\n")
if(exists(".privateFirst", where = 1))

.privateFirst()
cat("the answer to 2 * 2 is", 2 * 2, "\n")

}

The statement involving .privateFirst allows each individual directory to
have its own start up actions. Under this scheme you use .privateFirst like
you would normally use .First.

Note that the attach statement presumes that all of the places where S
is to be used are on the same level of the directory tree. If this is not to
be the case, then that line needs to be changed—in S-PLUS a statement like
getenv("HOME") could be part of the solution.

What is important is the effect of dividing your objects rationally while
maintaining convenience. The exact mechanism is not very important. You
may have noticed that abstraction is still the operable concept. It is just that
now we are attempting proper abstraction of groups of S objects.

In S-PLUS there is also a .First.local that can be used at a site so that
a set of startup actions is performed for all of the users. For example, objects
may be assigned, and libraries attached.

3.4 Environment

Your S session is controlled by a number of options that can be inspected and
changed by the options function. There are quite a number of options each of
which tends to be recognized by one or more functions, and some of the options
are directed at the S language itself.

You can add your own options—there is no distinction between the options
that come with S and those that you create. However, with freedom comes
responsibility. When you intend to change an existing option but misspell it,
then you get a new option and the old option still retains its old value. The
function soptions (as in “safe options”), listed below, gives a warning when
you are adding an option so that you will realize when you’ve made a mistake.
You can always use soptions in lieu of options.

"soptions"<-
function(...)
{

in.names <- names(list(...))

S Poetry c©1998 Patrick J. Burns v1.0

46 CHAPTER 3. ECOLOGY

oldnames <- names(options())
newnames <- in.names[!match(in.names, oldnames,

nomatch = 0)]
if(length(newnames)) {

warning(paste("new options added: ",
paste(newnames, collapse =
", ")))

}
ans <- options(...)
if(.Auto.print)

ans
else invisible(ans)

}

An example of when this is useful is:

> soptions(warning=2)
Warning messages:

new options added: warning in: soptions(warning = 2)

The actual option is named warn and what should have been typed was:

> soptions(warn=2)

If the options function were used instead of soptions, then no warning would
have appeared and the user would probably not realize for a while that the option
was not changed. This example also points out a weakness of soptions—there
will be no warning message if the warn option is not set properly.

Some of the more important options are now discussed. See the options
help file for more information on these options and to learn about other options.

The object.size option limits the size in bytes of an object when it is
created. This is a safety feature so that blunders along the lines of

1:Inf

are not taken seriously. In many versions of S the default value is rather small,
so this is a good candidate to be changed in your .First. There is also an
object.size function that returns the size in bytes of its argument.

The digits option controls the number of significant digits that are printed.

> cat(pi, "\n")
3.14159265358979
> print(pi)
[1] 3.141593
> cat(format(pi), "\n")

S Poetry c©1998 Patrick J. Burns v1.0

3.4. ENVIRONMENT 47

3.141593
> options(digits=14)
> print(pi)
[1] 3.1415926535898
> cat(pi, "\n")
3.14159265358979

From this example you can see that print obeys the digits option, as does
format, but cat does not.

The width and length options also concern printing. width gives the
maximum number of characters to put on a line. For example, it should typically
be 80 when printing to a terminal, and it is set at 55 for listings in this book.
length specifies the number of lines per page, and is used, for instance, to decide
how often to print column headings when printing a matrix. If you only want
the column labels printed once at the start, then set the length option to some
large number.

The error option gives the action to be performed when an error during
evaluation occurs. This can be either a function (with no arguments) or an
expression of a call to a function. So you can say

options(error=dump.frames)

or

options(error=expression(dump.frames()))

but not

options(error=dump.frames()) # WRONG

Your two main choices for error are dump.calls and dump.frames. The
former returns the stack of calls at the time of the error, while the latter returns
the stack of calls plus the state of each variable in each call at the time of the
error. See the debugging chapter to learn why you care. The ignore.error
function on page 215 is an instance where it is natural to set the error option
to NULL.

The warn option controls what happens when a warning is encountered. The
two extremes are -1 to suppress warnings, and 2 to convert warnings to errors.

You can change the prompts that S gives by using the prompt and continue
options. You may, for example, want the prompt to include the name of the
current directory.

The keep option states what should be kept in a certain hash table. After
an S session starts up, each object that is used is tested to see if it should be
put in the hash table. An object that is in the hash table is found quicker than
objects that are not in it. Usually keep is set to "function" so that functions

S Poetry c©1998 Patrick J. Burns v1.0

48 CHAPTER 3. ECOLOGY

and only functions are hashed. You may have noticed that a function runs slower
the first time it is called in a session than subsequently. You can set keep to
"any" which will put all objects in the hash table. This is generally a bad
idea because you will soon use lots of RAM, but it can be a useful strategy to
temporarily use this setting to hash some objects that will be accessed numerous
times in the session. Going the other way, keep can be set to NULL to disable
hashing entirely. This could be used if you are going to access a large number
of functions only once. See the discussion of synchronize on page 103 for more
on this hash table.

Some other more esoteric options that can be useful are expressions, echo
and interrupt. See page 219 for a discussion of how options are implemented.

The par function is similar to options in many respects, but it controls the
behavior of S graphics. The graphics parameters mostly have names consisting
of three characters, so the meaning of a graphics parameter is not completely
discernible from its name—take this as a lesson of how not to name objects.

DANGER. Although generally analogous, the options and par functions do
have different conventions for the return value.

> par("mar")
[1] 5.1 4.1 4.1 2.1
> par(c("mar", "cex"))
$mar:
[1] 5.1 4.1 4.1 2.1

$cex:
[1] 1

When querying the value of a single graphics parameter, par returns the
value of the parameter, and only returns a list of values when two or more
parameters are queried. In contrast, options always returns a list. However,
when a graphics parameter is being set, then par does return a list (invisibly)
so that the following idiom will work:

on.exit(par(old.par))
old.par <- par(mar=c(8,4,1,1)+.1)

S Poetry c©1998 Patrick J. Burns v1.0

3.5. SOURCE CONTROL 49

3.5 Source Control

It is wise (and more relaxing) to have your code under a control system. I will
talk about SCCS, but there are others, such as RCS. SCCS is an acronym for
“Source Code Control System”. The idea is that you have a history of versions
of the code (or whatever) so that you can recover any particular version. The
main reasons to use such a system are: the new version that you just wrote may
not work right so you want to go back to what did work; you need to reproduce
the state that existed at some specific time in the past; you are protected from
accidentally destroying what exists. Believe me, the last point is no small bonus.

The two S functions called sccs and diffsccs make it trivial to put S
objects under SCCS control. The only preparation is to make sure that you
have SCCS available on your machine and to create a subdirectory called SCCS
in the directory where you want the control files to live. Start S in this same
directory. An object named my.fun is put under control with the command:

sccs(my.fun)

This creates a file in the current directory called my.fun.q which is a dump of
the function. Furthermore there is a related file inside the SCCS directory to
keep track of the versions (done in a memory efficient manner).

My usual method when I am about to edit a function is to do:

diffsccs(my.fun)

to see if what is there is different than the last SCCS version. If it is, then I
use sccs on it, and then edit the function. I have found it best to try out my
changes to a function rather than immediately creating a new version, hence
the reason that SCCS is often not up-to-date. If the S object has a name that is
not nice for a filename, then using the xname argument to sccs and diffsccs
is essential. Here is an example:

diffsccs("/.rationalnum", "Div.rationalnum")

If you want to replace the current definition of a function with the last version
(or if you accidentally removed the function), then use source or restore on the
.q file. To get a version farther back, you will need to use an SCCS command
before using source or its relatives.

In addition to putting S objects under source control, it is good to control
help file, C and Fortran sources. For these you need to learn more about SCCS.
Unix Power Tools by Peek, O’Reilly and Loukides (1993) has a brief introduc-
tion to SCCS (despite what they say, nothing needs to be added to files put
under SCCS). Details of the use of SCCS are available in the man page. You
may find it useful to write some simple scripts or aliases to perform the tasks
with names that make sense to you.

Here are the listings for the two functions:

S Poetry c©1998 Patrick J. Burns v1.0

50 CHAPTER 3. ECOLOGY

"sccs"<-
function(x, xname = x, new = !length(unix(paste("ls",

xfile), out = T)), already.out = F)
{

ok.dump <- function(x, xfile, do.dd)
{

if(do.dd) {
data.dump(x, xfile)

}
else {

dump(x, xfile)
}

}
start of main function
if(is.character(x)) {

if(length(x) > 1)
stop("only one at a time")

}
else x <- deparse(substitute(x))
do.dd <- !is.function(get(x))
if(do.dd) {

xfile <- paste(xname, "Q", sep = ".")
}
else {

xfile <- paste(xname, "q", sep = ".")
}
if(new) {

ok.dump(x, xfile, do.dd)
unix(paste("sccs create", xfile), out

= F)
unix(paste("rm ,", xfile, sep = ""),

out = F)
}
else {

if(!already.out)
unix(paste("sccs edit", xfile),

out = F)
ok.dump(x, xfile, do.dd)
unix(paste("sccs delget", xfile), out

= F)
}
hcom <- paste("test -f ", xname, ".d", sep =

"")
if(unix(hcom, out = F))

warning(paste("file ", xname,
".d not found, do you have a help file?",

S Poetry c©1998 Patrick J. Burns v1.0

3.5. SOURCE CONTROL 51

sep = ""))
invisible(xfile)

}

CODE NOTE. This looks messy, but it is mainly a bunch of decisions. Most
of the trickier parts will be covered in the next chapter. The main substance of
the function is knowing the SCCS commands, but switching between dump and
data.dump is an important feature.

CODE NOTE. The function has two different ways of testing for the exis-
tence of a file. This is done for the purpose of demonstrating options. I advise
you to pick one way of doing a task, especially in a single function.

The “.q” in the file names comes from QPE (S’s nom de guerre). The ending
“.s” is sometimes used for assembly code.

"diffsccs"<-
function(x, xname = x)
{

if(is.character(x)) {
if(length(x) > 1)

stop("only one at a time")
}
else x <- deparse(substitute(x))
do.dd <- !is.function(get(x))
xfile <- tempfile("dumpsccs")
on.exit(unlink(xfile))
if(do.dd) {

data.dump(x, xfile)
suffix <- ".Q"

}
else {

dump(x, xfile)
suffix <- ".q"

}
cmd <- paste("diff -c ", xname, suffix,

" ", xfile, sep = "")
invisible(unix(cmd, out = F))

}

CODE NOTE. Actually this is misnamed since it doesn’t depend on SCCS
at all. It checks the difference between the current value of the object in S and
a representation of it in a file in the current directory—it presumes that the file
is not being changed behind the back of sccs.

S Poetry c©1998 Patrick J. Burns v1.0

52 CHAPTER 3. ECOLOGY

3.6 Test Suites

Correct answers are nice. A step in that direction is knowing that today’s an-
swers are the same as last week’s. The verify function—given below—does
this. Here are some uses of verify. You have made some efficiency improve-
ments to your functions, and you want to ensure that you get the same answers.
You have moved to a different version of S, or a different version of the operating
system, or a different architecture. You are making your code publicly available
and it is desirable that the user has some assurance that they are getting good
answers on their setup. A particularly vivid example is that the person may
want to know if the code works under both S and R.

Tests for software are usually given less than their due. Testing ranges from
formal test suites (like those that verify runs) to the completely informal.
Although I think it is very important to have formal test suites for functions
that you depend upon, probably the informal testing of functions as you write
them is the most important testing that is performed. The informal testing
should be fodder for the formal tests. I’ll now discuss three types of tests: black
box, white box and regression. I think it is good to know these distinctions,
though it is not necessarily clear into which category a particular test falls.

The name “black-box test” comes from the idea that the person writing
the test does not know anything about how the code is written—code need not
even exist when the test is drafted. The tester merely knows what the code is
supposed to do. If there is a specification for the code, then this is obviously
a starting place for the tests. Documentation of the code—especially if written
by some one other than the programmer—is a good source. The test should
definitely include specific examples in the documentation (and hence it becomes
a test of the documentation also). Implications that the documentation makes
should be tested. Test the most common uses. Once that is done, try to get
the test to hit as much functionality as feasible.

White-box testing means that the tester has knowledge of the code. Given
knowledge of which S functions are used, tests may be based on weaknesses
or common misuse of some of those functions. The structure of the code may
imply areas where it is most vulnerable.

Regression tests are tests of bugs that have been fixed. It seems ludicrous,
but these are actually very valuable. First off, reincarnation definitely exists
for bugs—it is not at all uncommon for a bug that had been fixed to reappear.
Also the bug may be an indication of a general weakness that the test might
guard against. When you write a regression test, it is important that you test
that the code is right, not that you don’t get a particular wrong answer. That
is, you want the test to be:

2 * 2 == 4 # good test

not

2 * 2 != 5 # poor test

S Poetry c©1998 Patrick J. Burns v1.0

3.6. TEST SUITES 53

Although there is no truly effective way to test software, there are some
general principles that are good to follow.

Test along “seams”. Just what this means depends on the situation, but it
can mean values of 1 or 0 when positive integers are expected, zero length inputs,
singular matrices, arrays that have one or more dimensions only 1 long, etc. For
example, it was important to make sure that soptions (page 45) worked when
there were no argument names.

Give the function garbage. This should not just be random garbage, it
should be inputs that a naive user might feed the function. For instance, we
may well have written the sccs function so that it only accepted a character
vector containing the names of objects. If we had written it that way, then a
“garbage” input would have been the unquoted name of a function.

A class of bugs to look for—with either black or white box tests—is “one-off”
bugs. For instance it is easy to get the index wrong when translating between
S and C, or to get the size of something wrong by not including both ends.

Another class of bug is “first-only”. Sometimes a routine will work only the
first time it is used in a session. Alternatively, it might not work the first time,
but work subsequently. Bugs like this are the result of some global variable not
operating properly.

Testing should be continuous. Expert programmers are always skeptical,
they forever question if everything is making sense. ’tis our turn now To hear
such tunes as killed the cow. 11

Let’s think about what sort of informal testing should be done for the sccs
function listed above. The first thing, of course, is to make sure that it works
at all—so test it on a function that hasn’t been put under control, then change
that same function and use sccs again to make sure that it updates okay. One
potentially flaky spot is that we allow as input both a character string containing
the name of the object and the name itself. We want to make sure that the
same behavior occurs when the input changes between these two forms. Still
along this line we should look at what happens when the object that we want
to put under SCCS control is character, and specifically that a character vector
of length 1 can be properly put under control. Another potential trouble spot is
when the name of the object is weird and we need to use the xname argument.

We may consider testing sccs thoroughly. To do this, we would want to
test it on objects with and without troublesome names that were functions and
non-functions, possibly with character data as a special case. We would want
to test it with new being both TRUE and FALSE, and with already.out both
TRUE and FALSE. So a simple, little function that doesn’t do very much is
going to require on the order of 10 test cases to cover all possibilities. This
should give you some appreciation for the difficulty of testing a large piece of
software.

S Poetry c©1998 Patrick J. Burns v1.0

54 CHAPTER 3. ECOLOGY

verify is a generic function with two methods. The default method expects
a vector of character strings, where each string is an S command. The default
method returns an object of class "verify". The other method of verify is
for objects of class verify and it compares the current answers to the original
answers to see if they have changed (significantly).

To start, give verify a character vector containing the commands that you
want to test. In the test below, we give verify two arguments—the first is a
character vector of commands, and the second is a list of the objects to be used
in the commands. Both objects given as arguments have names. Names are
optional for the commands—but convenient when there are a large number of
commands in the test. It is mandatory to have names for the second argument.

> jjverif <- verify(c(sin="sin(x)", ran="runif(9)"),
+ list(x=1:4))
> jjverif
Passed:
sin ran
NA NA

Commands:
sin ran

"sin(x)" "runif(9)"
Names of data: x
Specifics:
version: Version 3.1 Release 1 for Sun SPARC, SunOS 4.x : 1992
Machine: revery
Date: Fri Dec 10 12:07:37 EST 1830

The answers from each test are available as input to subsequent tests by the
name of Test. plus the name of the test or its index number:

> jjverif2 <- verify(c(sin="sin(x)", ran="runif(9)",
+ more="outer(Test.sin, Test.ran)"), list(x=1:4))
> jjverif2
Passed:
sin ran more
NA NA NA

Commands:
sin ran more

"sin(x)" "runif(9)" "outer(Test.sin, Test.ran)"
Names of data: x
Specifics:
version: Version 3.1 Release 1 for Sun SPARC, SunOS 4.x : 1992
Machine: julia
Date: Sat Aug 24 12:08:37 GMT 1591

Once you have this original test object, you can use it as an argument to verify
in whatever new environment you like. The result of the new call to verify will

S Poetry c©1998 Patrick J. Burns v1.0

3.6. TEST SUITES 55

tell you if any of the answers are different, and if so, then how. At some point,
it may be that you decide that the old tests were wrong and that the new one
is giving the correct answers.

> verify(jjverif)
Passed:
sin ran

T T
Commands:

sin ran
"sin(x)" "runif(9)"
Names of data: x
Specifics:
version: Version 3.3 Release 1 for Silicon Graphics Iris,
IRIX 5.2 : 1995
Machine: azcan
Date: Thu Oct 2 12:14:09 EST 1879

The commands that are in your test suite should each cover as much func-
tionality as possible—just as a line of good poetry packs the maximum amount
of meaning. For example, testing transcribe is also a test of perl because
transcribe calls perl. The suite as a whole should test all of the significant
functionality, and anything that seems prone to being wrong.

There is the task of creating the initial vector of character strings of com-
mands. I’ll give the method I’ve used to do this. Create a clean directory
with nothing in the .Data. Write a file containing the commands that you
want to test, with each one assigned to Test.something. Objects that are to
be passed into verify—like variousnum in my example—are assigned in this
clean directory.

> !head poet.verif.q
Test.transcribe _ transcribe("state.name",".","_")
Test.loan _ loan(2000, .08, 2, 1997)
Test.update.loan _ update(Test.loan, rep(100,5))
Test.numbase _ numberbase(-9:9,2,10)
Test.ratnum _ rationalnum(variousnum, rep(variousnum, rep(16, 16)))
Test.ratnum.op _ Test.ratnum - 2 * Test.ratnum
Test.pg1 _ polygamma(1:10, "trig")
> source("poet.verif.q")

As you write this file, you can use source to evaluate the file of statements. At
this stage you have the opportunity to see if the results are as they should be.

Once you are pleased, you need to make the character vector to feed to
verify. Make a copy of the file so that you retain the original (to make addi-
tions), and edit the copy by taking out the assignments. Using an underscore

S Poetry c©1998 Patrick J. Burns v1.0

56 CHAPTER 3. ECOLOGY

makes it easy to do the editing as long as any assignments within the test proper
are not underscores. You can use another copy of the file to get the names to
give to the commands.

> !cp poet.verif.q poet.verif.grab
> # edit poet.verif.grab
> q()

Now, go to the home of the code so that the verification object will live in the
same directory.

> jjpv <- scan("../spo.test/poet.verif.grab", what="",
+ sep="\n")
> names(jjpv) <- jjvn
> poet.verif <- verify(jjpv, list(variousnum=get("variousnum",
+ where="../spo.test/.Data")))

Scan the commands into S so that each command is a separate element of the
resulting character vector. You can then try this out on verify to see how it
goes. It will, of course, work seamlessly.

> print(poet.verif, short=T)
Passed:
transcribe loan update.loan numbase ratnum ratnum.op

NA NA NA NA NA NA
pg1 pg2 pg3 digam1 digam2 digam3 digam4 digam5
NA NA NA NA NA NA NA NA
expint1 expint2 mathgra getpath line.int lagrange

NA NA NA NA NA NA
global.var sym.addr symsqrt stack.init stack.pop

NA NA NA NA NA
que.init que.pop quad.form twice.2

NA NA NA NA
Names of data: variousnum
Specifics:
version: Version 3.1 Release 1 for Sun SPARC, SunOS 4.x : 1992
Machine: plum
Date: Mon Sep 17 08:37:51 EST 1883

So now poet.verif is the verification object that users of the code can use at
their whim with a command like:

> print(verify(poet.verif), short=T)

DANGER. This really was done under S-PLUS version 3.1, but the test will
system terminate using the usual verify.default. I added a cat statement in

S Poetry c©1998 Patrick J. Burns v1.0

3.6. TEST SUITES 57

the loop, and it ran fine. This bug was fixed (I believe) in 3.2. Symptoms are
that strange things happen in a loop, and changing something like putting in
calls to cat make it disappear or change.

There is also subscripting of verify objects so that you can run only part of
a test. For example, if you do not have an ANSI C compiler, you can do:

verify(poet.verif[-28])

to remove the one test that demands this.

Below is the listing for verify.verify, the verify method for objects of
class "verify". The default method is similar, though it has an extra argument
for data.

"verify.verify"<-
function(x)
{

commands <- attr(x, "commands")
random.seed <- attr(x, "random.seed")
if(length(random.seed)) {

old.seed <- .Random.seed
on.exit(.Random.seed <<- old.seed)
.Random.seed <<- random.seed

}
n <- length(x)
data <- attr(x, "data")
passed <- ans <- vector("list", n)
tnam <- xnam <- names(x)
if(!length(tnam))

tnam <- 1:n
for(i in 1:n) {

if(length(data)) {
ans[[i]] <- eval(parse(text =

commands[i]), data)
}
else {

ans[[i]] <- eval(parse(text =
commands[i]))

}
passed[[i]] <- all.equal(x[[i]], ans[[

i]])
data[[paste("Test", tnam[i], sep = "."

)]] <- ans[[i]]
}

S Poetry c©1998 Patrick J. Burns v1.0

58 CHAPTER 3. ECOLOGY

if(all(unlist(lapply(passed, mode)) ==
"logical"))
passed <- unlist(passed)

names(passed) <- xnam
length(data) <- length(data) - n
specifics <- list(version = if(exists(

"version")) version else NULL, machine
= unix("hostname"), date = date())

attributes(ans) <- list(names = xnam, data =
data, commands = commands, passed =
passed, random.seed = random.seed,
specifics = specifics, class =
"verify")

ans
}

Mainly this function loops over the commands in the test suite, evaluates them,
adds each result to the list of available variables, and compares the current
results to the old results. An important feature is that it takes care of getting
the random seed right if the test involves any functions that use the S random
generator.

3.7 Time Monitoring

There is one operation in S that is essentially instantaneous—assignment. The
object is already there, so assignment merely adds the pointer for the name. So,
in general, if an object is used twice or more in a function, it will be faster (and
probably more memory efficient) to name the object.

A simple tool in S to monitor the time used by function calls is unix.time.
Just give the command you want to time as the argument to unix.time.
unix.time returns five numbers—the first two are different kinds of computer
time and the last two are computer times for subprocesses; the third number is
the elapsed (wall) time rounded to the nearest second. The last two numbers
are zero for almost all commands. I have a personal function that reports the
total computer time and the elapsed time—I find that more useful. When I do
count the clock 12

> unix.time(rationalnum(1:10, 3))
[1] 0.04000092 0.00000000 0.00000000 0.00000000 0.00000000
> unix.time(for(i in 1:100) rationalnum(1:10, 3))
[1] 3.7300014 0.1600001 9.0000000 0.0000000 0.0000000
> unix.time(for(i in 1:100) rationalnum(1:10, 3))
[1] 3.7200012 0.1499999 8.0000000 0.0000000 0.0000000
> unix.time(for(i in 1:100) rationalnum(1:10, 3))

S Poetry c©1998 Patrick J. Burns v1.0

3.7. TIME MONITORING 59

[1] 3.7000008 0.1800001 8.0000000 0.0000000 0.0000000

In the first call the total time is just a fraction of a second. In order to get
timing that is at all accurate, you need times that are several seconds. The
usual trick is to use a for loop to call the command some number of times. The
last three commands are all the same, and have similar timing, so we seem to
be getting accurate timing (though 4 seconds is a little slim still). You might
notice that the elapsed time is a lot more than the computer time. In this case
it is because there are other users on the machine. Sometimes the elapsed time
is greater even when the machine is doing nothing else. This implies that your
command uses a significant amount of time that is not being accounted for, such
as disk access time.

The interlude function monitors the number of calls to and the execution
time of selected functions. This is useful to see where the time goes in long
calculations. This is often called “profiling”, but that name is already taken in
S. The function is rather involved, so a discussion of the code for it is deferred
until page 220.

This can be used either to see how much time particular functions take,
or how many times they are called. The purpose in the first case is often to
see where the computation time is going with the view of speeding things up.
Sometimes you have very little idea of how often various functions get called.
It is feasible to think that there are cases where knowing the number of calls to
some function can suggest a more efficient algorithm.

I used interlude to striking advantage in one case. A function given a 2-
dimensional problem ran in a few minutes, but it took eighteen hours to complete
on a 30-dimensional problem when my calculations based on the 2-dimensional
case showed that it should only take a couple hours. I immediately thought of
paging as the reason, but an examination of the process showed that memory
use was not excessive and paging was not the cause. Then I put interlude on
the case, and it showed that rank was the source of the problem (there were lots
of calls to it). I wrote a rank.fast function that ignored missing values (there
were none in my application) and ties (which were rare and unimportant). The
30-dimensional problem then ran in about 30 minutes.

There are poor uses of this function as well as good ones—the “Code Tuning”
chapter of Bentley (1986) discusses the issue from the point of view of a language
like C. He points out that it is important to get the big picture right before
mucking around in the details.

To use interlude, give it a vector of character strings naming the functions
that you want to monitor. For instance:

> interlude(c("qr", "c", "rep", "seq"))
Warning messages:
1: assigning "qr" on database 0 masks an object of the

S Poetry c©1998 Patrick J. Burns v1.0

60 CHAPTER 3. ECOLOGY

same name on database 5
2: assigning "c" on database 0 masks an object of the

same name on database 7
3: assigning "rep" on database 0 masks an object of

the same name on database 5
4: assigning "seq" on database 0 masks an object of

the same name on database 7
> jj <- lm(formula = freeny.y ~ freeny.x)

Execute as many commands as you like, and when you want to see the results,
type:

> summary.interlude()
total.time number.calls mean.time

qr 0.00000000 0 NA
c 0.01666665 9 0.00185185

rep 0.00000000 0 NA
seq 0.08333325 1 0.08333325

Use summary.interlude whenever you like. You can remove some or all of the
functions from being monitored with uninterlude. The default is to remove
all the functions.

DANGER. interlude creates temporary versions of the functions that will
last no longer than the present session. The trace function uses this same
mechanism—it will not work to use both trace and interlude on a function
at the same time.

For accurate timing, you should avoid monitoring functions that are used by
other functions being monitored.

DANGER. You do not want to edit functions that are under interlude since
you will get the interlude changes mixed into your copy of the function. It
makes a mess.

3.8 Memory Monitoring

The amount of memory that an S function takes to run is generally the most
important measure of its efficiency. It is also hard to understand. The amount of
memory a function uses depends—sometimes heavily—on the state of memory
at the time that the function is called. Seemingly trivial changes to a function
can sometimes have dramatic effects on memory usage.

S Poetry c©1998 Patrick J. Burns v1.0

3.8. MEMORY MONITORING 61

If you have a specific task that you are only doing once and you are running
out of memory, then there are a few things that you can do. The first thing to
try is to get out of S and start a fresh session—the command may work since
the new S session is using less memory. If this doesn’t work, then see if you
can break the task into pieces that can be performed individually. For example,
suppose that you are doing a linear regression

> ans <- lm(huge.y ~ huge.x1 + huge.x2)

and you are running out of memory. The lm function does quite a lot of data
manipulation before it gets to the actual computation of the regression. We can
do the data manipulation by hand, and then call the computational function
directly:

> huge.xmat <- cbind("(Intercept)"=1, huge.x1, huge.x2)
> ans.alt <- lm.fit.qr(huge.xmat, huge.y)

The ans.alt object is without a few of the flourishes that ans has, but probably
has all you need. For large objects the alternative method will use substantially
less memory.

The remainder of this section presumes that you have a programming task
that will be done repeatedly, and you want it to be memory efficient. It is the
maximum memory that a function uses during the call that is important—it
doesn’t matter if that usage is throughout the entire function or just at one line
of it.

DANGER. There is one idiom that is guaranteed to waste memory. Here is
an example:

AVOID THIS
ans <- NULL
for(i in 1:n) {

ans <- c(ans, sum(n:i))
}

If you are worrying that this won’t work because on the first iteration we are
concatenating NULL with something, that is not a problem—it works fine. The
problem is that this code fragments memory. Before the for loop, ans takes
up a certain number of bytes (the size of the S header). On each pass through
the loop, ans grows in size so it generally needs to move from where it has
been living to a new location. This frees up the space it was using, but many
objects will be too large for the hole so there will be numerous small holes in
the memory which means that more total memory has to be used.

The example above can be written much more efficiently:

S Poetry c©1998 Patrick J. Burns v1.0

62 CHAPTER 3. ECOLOGY

better
ans <- numeric(n)
for(i in 1:n) {

ans[i] <- sum(n:i)
}

Of course, in this example the truly best way would be to figure out the formula,
and avoid the loop altogether.

When you don’t know what the final length of the answer will be, then the
second version will not work. If this is the case and the loop is not long, then I
just use the adding-on technique. But if the loop is long and you are working
with large objects, you will want to find an alternative.

There are less callous ways of fragmenting memory. Function fjjloop pro-
vides a simple example of a type of operation that is common in some of my
work.

> fjjloop
function(x, backwards = F)
{

nobs <- dim(x)[1]
ans <- numeric(nobs)
iseq <- 2:nobs
if(backwards)

iseq <- rev(iseq)
for(i in iseq) {

this.x <- x[1:i,]
this.v <- var(this.x)
ans[i] <- sum(this.v)

}
fjjcomma(memory.size())

}

The fjjcomma function is just a call to the S-PLUS format function so that
commas are placed in numbers. (It needs S-PLUS version 3.2 or later.)

The key characteristic is that the data changes size throughout the course
of the loop. It is also of importance that the order in which the iterations are
performed can be changed. When the backwards argument is FALSE, then the
data grows in size throughout the loop, and they shrink in size when backwards
is TRUE. To test the memory use in these two cases, we issue each command as
the first in a session of S.

> # in fresh session
> fjjloop(jjbig)
[1] "4,209,384"

S Poetry c©1998 Patrick J. Burns v1.0

3.8. MEMORY MONITORING 63

> # in fresh session
> fjjloop(jjbig, back=T)
[1] "1,997,544"

Clearly the backwards order uses substantially less memory. (jjbig is 100 by
100 in this example, by the way.) The reason that backwards is superior is that
on each iteration the new this.x can fit where the old one was, while fresh
memory needs to be used when this.x is growing in size.

There are two main reasons for memory growth in S—garbage and copies.
Garbage is created in loops as objects are continually created and destroyed. S
has a garbage compactor that recovers most of the memory, but some garbage
remains. Often the main expenditure of memory is because there are numerous
copies of objects. S functions guarantee that they will not change the objects
that were passed in as arguments (unless the programmer specifically programs
that to happen), so each function tends to make its own copy of its arguments.
One of the main things to do in managing memory is to try to reduce the number
of copies of objects that are likely to be large.

The primary diagnostic for memory use is statements like

cat("at location 2, memory is", memory.size(), "\n")

that are scattered through the code. To use these reliably, each time you call
the function you need to have just started the S session (possibly followed by a
specific set of commands). You also need to use objects that are large enough
(maybe on the order of a megabyte) so that you can see how many copies are
being created.

Suppose that we have two matrices A and B where A is symmetric and we
want to get the larger matrix that is partitioned as:

A AB′

BA BAB′

If these matrices are large, then memory may be of concern. Let’s look at some
possible definitions of functions to do this and how they use memory. The first
attempt is compact and simple to understand:

fjjaugsym1
function(a, b)
{

part <- rbind(a, b %*% a)
cbind(part, part %*% t(b))

}

Here are the objects to test the function with.

S Poetry c©1998 Patrick J. Burns v1.0

64 CHAPTER 3. ECOLOGY

> dim(jja)
[1] 200 200
> dim(jjb)
[1] 100 200
> fjjcomma(object.size(jja))
[1] "320,124"
> fjjcomma(object.size(jjb))
[1] "160,124"

When testing memory use, it is useful to create objects at least this large so
that significant changes in memory will be easily visible.

New S Session
> jj <- fjjaugsym1(jja, jjb)
> fjjcomma(memory.size(T))
[1] "4,961,400"
> fjjcomma(object.size(jj))
[1] "720,124"

Let’s do some accounting now. Inputs total about half a megabyte and there
was about a half of a megabyte used before we got the first S prompt. So about
2 megabytes are accounted for, leaving about 3 megabytes as “wasted”. If your
function does anything at all, then there is going to be memory used in addition
to the inputs and output—the aim is to keep the amount small.

The second attempt is significantly longer, but the logic is still simple. The
idea is to create a matrix that is the size of the result, and then do replacements.

"fjjaugsym2"<-
function(a, b)
{

da <- dim(a)
db <- dim(b)
newsize <- sum(db)
ans <- array(NA, c(newsize, newsize))
oseq <- 1:da[1]
nseq <- 1:db[1] + da[1]
ans[oseq, oseq] <- a
part <- b %*% a
ans[nseq, oseq] <- part
part <- t(part)
ans[oseq, nseq] <- part
ans[nseq, nseq] <- b %*% part
dna <- dimnames(a)[[1]]
if(!length(dna))

dna <- rep("", da[1])
dnb <- dimnames(b)[[1]]

S Poetry c©1998 Patrick J. Burns v1.0

3.8. MEMORY MONITORING 65

if(!length(dnb))
dnb <- rep("", db[1])

newdn <- c(dna, dnb)
if(sum(nchar(newdn)))

dimnames(ans) <- list(newdn, newdn)
ans

}

The first thing to do is check to make sure that it does the same thing as the
previous version:

> all.equal(fjjaugsym2(var(freeny.x), matrix(1:8,2)),
+ fjjaugsym1(var(freeny.x), matrix(1:8,2)))
[1] T

Now test the memory use with our large objects:

New S Session
> jj <- fjjaugsym2(jja, jjb)
> fjjcomma(memory.size(T))
[1] "3,470,456"

So this saves 1.5 megabytes over fjjaugsym1. A logical improvement to this
latest version is to change the NA in the call to array to as.double(NA). This
way ans will be initialized to be its final size instead of half as big. However in
this test, it actually uses more memory—I don’t understand why.

Some of the lines in the function can be permuted which may have conse-
quences for memory use. Obviously the same amount is going to be written to
memory—the issue is how efficiently memory is recycled. I didn’t try very hard,
but I didn’t find a better order than the one given.

While memory isn’t cleaned up well within a function, all of the memory is
released (except that used by the result) when the function exits. This can be
used to advantage at times in managing memory by putting some calculations
into a subfunction. There’s a catch—the memory you save must more than com-
pensate for any extra copies that you create when you increase the depth of the
function calls. Encapsulating most of the contents of a loop into a subfunction
often helps relieve memory growth.

Loops in S return a value, though this value is seldom used. At times memory
use can be reduced by making the return value of a loop be something small
(like NULL) rather than the large object that happens to be the value. Version
4.0 of S-PLUS eliminates the return value of loops.

Below I show the results of an attempt (slightly unsuccessful) at reducing
memory use of a test function. The subfunction principle and the NULL value for
the loop were tried separately and together. Here are the function definitions:

S Poetry c©1998 Patrick J. Burns v1.0

66 CHAPTER 3. ECOLOGY

> fjjmem1
function(iter = 10, n = 100)
{

ans <- vector("list", iter)
for(i in 1:iter) {

cat("i is", i, "memory.size is",
memory.size(), "\n")

x <- outer(rep(1, n), rep(5, n))
ans[[i]] <- x %*% x

}
NULL

}
> fjjmem2
function(iter = 10, n = 100)
{

ans <- vector("list", iter)
for(i in 1:iter) {

cat("i is", i, "memory.size is",
memory.size(), "\n")

x <- outer(rep(1, n), rep(5, n))
ans[[i]] <- x %*% x
NULL

}
NULL

}
> fjjmem3
function(iter = 10, n = 100)
{

subfun <- function(n)
{

x <- outer(rep(1, n), rep(5, n))
x %*% x

}
ans <- vector("list", iter)
for(i in 1:iter) {

cat("i is", i, "memory.size is",
memory.size(), "\n")

ans[[i]] <- subfun(n)
}
NULL

}
> fjjmem4
function(iter = 10, n = 100)
{

subfun <- function(n)
{

S Poetry c©1998 Patrick J. Burns v1.0

3.8. MEMORY MONITORING 67

x <- outer(rep(1, n), rep(5, n))
x %*% x

}
ans <- vector("list", iter)
for(i in 1:iter) {

cat("i is", i, "memory.size is",
memory.size(), "\n")

ans[[i]] <- subfun(n)
NULL

}
NULL

}

Here are the results using S-PLUS version 3.3 on a Silicon Graphics. Function
fjjmem1 performed the same as fjjmem2:

new S session
> fjjmem2(n=300)
i is 1 memory.size is 544584
i is 2 memory.size is 6381384
i is 3 memory.size is 7823176
i is 4 memory.size is 7823176
i is 5 memory.size is 9264968
i is 6 memory.size is 10706760
i is 7 memory.size is 12148552
i is 8 memory.size is 12148552
i is 9 memory.size is 13590344
i is 10 memory.size is 13590344

new S session
> fjjmem3(n=300) # subfun
i is 1 memory.size is 544584
i is 2 memory.size is 6401864
i is 3 memory.size is 7843656
i is 4 memory.size is 7843656
i is 5 memory.size is 8564552
i is 6 memory.size is 9285448
i is 7 memory.size is 10006344
i is 8 memory.size is 10727240
i is 9 memory.size is 11448136
i is 10 memory.size is 12169032

new S session
> fjjmem4(n=300) # subfun and NULL return
i is 1 memory.size is 544584
i is 2 memory.size is 6401864

S Poetry c©1998 Patrick J. Burns v1.0

68

i is 3 memory.size is 7843656
i is 4 memory.size is 8564552
i is 5 memory.size is 9285448
i is 6 memory.size is 10006344
i is 7 memory.size is 10727240
i is 8 memory.size is 11448136
i is 9 memory.size is 12169032
i is 10 memory.size is 12889928

The subfunction saved a minor amount of memory. Notice that putting the NULL
at the end of the for loop, which is supposed to reduce memory use, actually
increased it when the subfunction is used. This is part of the frustration. There
were no differences in memory among these four functions using S-PLUS version
3.1 on a Sparc (the memory use there was slightly higher than here).

3.9 Things to Do

Decide what naming convention for S objects makes the most sense for you, and
rename your objects to fit it.

Decide how your S objects should be divided, and do it.

Put your important files and S objects under source code control, and create
verify objects for your important S functions.

Write a version of soptions that guarantees there will be a warning message
printed when a new option is added. Which functionality is better?

Test the memory and time use of some of your functions.

3.10 Further Reading

The literature on software testing is wide and varied, and contains no magic
bullets that I know of. One interesting little book is Davis (1995) 201 Principles
of Software Development.

3.11 Quotations

10Percy Bysshe Shelley “Ozymandias”
11A. E. Housman “Terrence, This is Stupid Stuff . . .”
12William Shakespeare (Sonnet 12)

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 4

Vocabulary

This chapter introduces some of the more important functions to know. Most
important is that you can find information on functions for yourself. If you
are running S-PLUS on a window system, then you should use the help.start
function before requesting help. There are two commands for getting help on a
function or other object—the following are equivalent:

help(match)
?match

You do not need to surround the name with quotes, although you may. Neither
do you need quotes when you ask for the name of a help file that is not an S
object:

help(Syntax)

In addition to the “Syntax” and “Devices” help files, the two most useful help
files of this sort in S-PLUS are “Release.Notes” and “Command.edit”.

You do need quotes around “illegal” names:

> ?break
? only meaningful if followed by name or call
Dumped
> ??
? only meaningful if followed by name or call
Dumped
> ?%%
Syntax error: sp.op ("%%") used illegally at this point:
?%%
> ?"?"
> ? # same as last command

69

70 CHAPTER 4. VOCABULARY

For the most part, help and ? are synonyms, but ? takes the special form
“methods” which gives you a list of possible methods for a generic function. (It
just looks at the names, it doesn’t check if they really are methods or not.)

> ?methods(summary)
The following are possible methods for summary

Select any for which you want to see documentation:

1: summary.aov
2: summary.aovlist
3: summary.data.frame
4: summary.default
5: summary.factor
6: summary.gam
7: summary.glm
8: summary.interlude
9: summary.lm
10: summary.loess
11: summary.mlm
12: summary.model.matrix
13: summary.ms
14: summary.nls
15: summary.ordered
16: summary.tree
17: summary.varcomp
Selection:

The result is a menu. Give the number of any object you want to get help for,
type 0 to exit. See more on the menu function on page 106.

S-PLUS has a methods function which mimics the “?methods” form, but
you get a character vector instead of a menu of options. The methods function
also has a class argument so that you can discover which generic functions
have methods for a specific class:

> methods(class="numberbase")
.Data .Data

"numberbase.numberbase" "print.numberbase"

Functions are categorized in the S-PLUS Reference Manual, in the S-PLUS
help window, and in Appendix 3 of Becker, Chambers and Wilks (1988). Use
one of these when you know what type of functionality you want but do not
know the name of the function that performs it. The categorization could use
some improvement, but is still useful.

If your system is properly configured, you can get hard-copy versions of help
files (including your own) via the help function.

S Poetry c©1998 Patrick J. Burns v1.0

4.1. EFFICIENCY 71

4.1 Efficiency

Improving the efficiency of your S functions can be well worth some effort.
Here are a few functions that can often be used to make your functions more
direct. But remember that large efficiency gains can be made by using a better
algorithm, not just by coding the same algorithm better. when the cities lie at
the monster’s feet there are left the mountains. 13

Whenever you have a number of elements that are to be selected from a
group of elements, match should come to mind. It can be used to avoid some
loops.

The match function has three arguments x, table and nomatch (the S-PLUS
version also has an incomparables argument). It returns a numeric vector as
long as x. The ith element of the result is the index of table that matches the
ith element of x. nomatch states what should be used when the element of x
doesn’t match anything in table.

Although straightforward, match can be employed in a variety of ways—I
always use the fact that the result has the same length as x as a hint about how
to use it in a given situation.

Suppose that we have two character vectors many.strings and good.strings
and we want the elements of many.strings that are in good.strings. This is
done with:

many.strings[match(good.strings, many.strings, nomatch=0)]

A specific example is:

> letters[match(c("e","D","ff","z"), letters, nomatch=0)]
[1] "e" "z"

Let’s think about what is happening. match gives indices for its second argument—
which is many.strings which is the vector being subscripted—so we have hope
of getting the right subscripts. We know that the correct answer can’t be longer
than good.strings, and since that is the first argument to match, that must
be true. So it is certainly a feasible solution, and in fact it isn’t hard to see that
it really is doing what we want.

Now suppose that we have a named vector the.data and we want to remove
any elements that have names in bad.ones (see the soptions function on page
45 for a similar situation). Here is one way of getting this:

the.data[!match(names(the.data), bad.ones, nomatch=0)]

match returns a numeric vector that contains zeros for elements that do not
match and a non-zero for those that do match a bad.ones element. The “bang”
operator coerces this to logical so the subscripting vector is logical and what we
want. Here is an example:

S Poetry c©1998 Patrick J. Burns v1.0

72 CHAPTER 4. VOCABULARY

> jjwt
dorothy harold munchkin stevie

14 15 2 4
> jjwt[!match(names(jjwt), c("stevie","esther"), nomatch=0)]
dorothy harold munchkin

14 15 2

DANGER. An almost equivalent version is:

the.data[-match(bad.ones, names(the.data), nomatch=0)]

This works only as long as at least one match exists. First, let’s look at what
happens when it is okay. match gives indices for the names of the.data that
are in bad.ones plus possibly some zeros; these are made negative and used
in subscripting. The subscripting ignores the zeros and removes elements cor-
responding to the negative subscripts. When there are no matches, then the
subscripting vector is all negative zeros, which are thought to be positive zeros,
so the result of the whole operation is a vector of length zero, rather than the
whole of the.data as we want.

DANGER. If the elements of the table argument are not unique, only the
first occurrence is used.

> match(c("here","aa","b","here"), c("here",letters,"here"))
[1] 1 NA 3 1

An example of when this might come into play is selecting all of the rows of a
matrix that have a column matching some values. As here where we want the
rows of the matrix where the first column contains either a 1 or a 2.

> jjmatr <- cbind(rep(1:3,4), rep(1:4,rep(3,4)))
> jjmatr[match(1:2, jjmatr[,1]),] # wrong

[,1] [,2]
[1,] 1 1
[2,] 2 1
> jjmatr[!is.na(match(jjmatr[,1], 1:2, no=NA)),] # right

[,1] [,2]
[1,] 1 1
[2,] 2 1
[3,] 1 2
[4,] 2 2
[5,] 1 3
[6,] 2 3

S Poetry c©1998 Patrick J. Burns v1.0

4.1. EFFICIENCY 73

[7,] 1 4
[8,] 2 4

Here is a function that uses match.

"p.replace"<-
function(x, old, new)
{

if(length(old) != length(new))
stop("old and new must be same length")

x.ind <- match(x, old, nomatch = 0)
x[as.logical(x.ind)] <- new[x.ind[x.ind != 0]]
x

}

This substitutes values from the new argument for values in the old argument.
Notice that the name begins with “p.” which is my personal prefix for modified
in-built functions (see page 41). There is an in-built replace, but even if there
hadn’t been, I would have wanted to put my prefix on since “replace” seems
such a common name.

An example of its use is:

> p.replace(c("The", "corgi", "pranced", "by", "the", "corgi"),
+ old=c("corgi", "pranced"), new=c("kitty", "strolled"))
[1] "The" "kitty" "strolled" "by" "the" "kitty"

For substituting characters within strings, see the transcribe function on page
276.

The match function is used in many spots, including the to.base10 function
(page 236).

Functionality related to that of match exists in pmatch, charmatch (both
discussed on page 94) and grep (page 83).

I find the outer function one of the most interesting in S. The statement

outer(x, y)

produces the equivalent of the mathematical statement xy′ (resulting in a ma-
trix) when x and y are vectors. outer is much more general than this though.
First off, it can use any function that is vectorized for two arguments, not just
the default multiplication. An example that might be surprising is

jj2let <- outer(letters, letters, paste, sep="")

S Poetry c©1998 Patrick J. Burns v1.0

74 CHAPTER 4. VOCABULARY

This produces a 26 by 26 matrix containing each two letter combination. (Ad-
ditional arguments to the function can be given—the sep="" is passed to the
paste call.)

The first two arguments to outer may be arrays as well as plain vectors, the
result is an array with dimension equal to

c(dim(as.array(x)), dim(as.array(y)))

So the command

outer(jj2let, letters, paste, sep="")

produces a 26 by 26 by 26 array of all the combinations of three letters.

There are times when using outer cuts down on execution time, but increases
memory use—one of those unfortunate times when you must decide between
evils. The interpolator.lagrange function (page 325) and exp.integral
(page 272) provide examples of outer.

sweep also involves arrays. If you want each element of a vector to be
subtracted from the corresponding row of a matrix, then you can just rely on
vectorization and automatic replication to do that:

> jjmat
[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15
> jjmat - 1:3

[,1] [,2] [,3] [,4] [,5]
[1,] 0 3 6 9 12
[2,] 0 3 6 9 12
[3,] 0 3 6 9 12

However, if you want the operation to be relative to columns, then sweep comes
to the rescue:

> sweep(jjmat, 2, 1:5, "-")
[,1] [,2] [,3] [,4] [,5]

[1,] 0 2 4 6 8
[2,] 1 3 5 7 9
[3,] 2 4 6 8 10

The “2” gives the dimension to work on—like the MARGIN argument to apply
(see the next section). The 1:5 is the vector to use as the second argument to
the function, and subtraction is the function being used.

S Poetry c©1998 Patrick J. Burns v1.0

4.2. THE APPLY FAMILY 75

sweep can handle higher dimensional arrays, and any function that is vec-
torized on two arguments.

When you have an atomic vector and you want to make it into a list with
each element of the vector in some component of the list, then use split. An
example is

> split(state.name[1:9], state.region[1:9])
$Northeast:
[1] "Connecticut"

$South:
[1] "Alabama" "Arkansas" "Delaware" "Florida"

$"North Central":
character(0)

$West:
[1] "Alaska" "Arizona" "California" "Colorado"

state.region is a category that corresponds to the state.name vector. This
produces a list that has one component for each category in state.region, and
each of the components is a vector of the state names within the region.

4.2 The Apply Family

The functions apply, lapply, sapply and tapply all apply a function to sections
of some object. These are used in lieu of a for loop. In general, the appropriate
apply function is faster—often dramatically so—than the equivalent loop.

Each of the four apply functions have an argument named FUN which can
be either a function or the name of a function. All three of the following are
essentially equivalent:

lapply(jjl, "mean")
lapply(jjl, mean)
lapply(jjl, function(x) sum(x)/length(x))

The first two are the same in the sense that the same function is applied. The
second two are the same in the sense that a function (rather than the name of
a function) is being passed into lapply as the FUN argument.

Each apply function also accepts an arbitrary number of additional argu-
ments to be given to FUN. There’s an example of this on page 28.

The apply function is for arrays. When you use apply, the MARGIN argument
specifies the dimensions that you want to keep. So a statement like

S Poetry c©1998 Patrick J. Burns v1.0

76 CHAPTER 4. VOCABULARY

apply(xmat, 2, myfun)

saves the second dimension while the first dimension (and any others) are “col-
lapsed” into the function call. For higher dimensional arrays, the MARGIN can
have length greater than one; these again are the dimensions to be saved.

DANGER. When the function used in apply returns a vector, then that
becomes the first dimension of the array that is returned. So a command like:

apply(freeny.x, 1, sort)

will return the transpose of what you would naively expect. The stable.apply
function on page 287 can be used to keep the dimensions of the result in the
same order as those of the input.

In recent versions of S-PLUS, the apply functions offer a speed advantage
over the equivalent for loop. Here is a function to sort the columns of a matrix
using a loop and an equivalent function using apply.

"fjjcsort1"<-
function(x)
{

for(i in 1:ncol(x)) {
x[, i] <- sort(x[, i])

}
x

}

fjjcsort2
function(x)
{

apply(x, 2, sort)
}

Note that it seems unlikely that you would really want to do such an operation.
As always, we want to test that they do the same thing—no matter how obvious.

> all.equal(fjjcsort1(freeny.x), fjjcsort2(freeny.x))
[1] T
> dim(jjm)
[1] 20 1000
> dim(jjm2)
[1] 20 10000

Using two different sizes of matrix we time these two versions.

S Poetry c©1998 Patrick J. Burns v1.0

4.2. THE APPLY FAMILY 77

> p.unix.time(for(i in 1:10) fjjcsort1(jjm))
comp time clock time memory

42.24 43 3088936
> p.unix.time(for(i in 1:10) fjjcsort2(jjm))
comp time clock time memory

34.02 35 3695144
> p.unix.time(fjjcsort1(jjm2))
comp time clock time memory

45.49 46 7459368
> p.unix.time(fjjcsort2(jjm2))
comp time clock time memory

39.12 40 21688872

We can see that apply does indeed improve the speed. There is an indication,
though, that memory use could be a problem with the apply version.

Always it is going to be more efficient if you can vectorize the problem. This
problem seems unamenable to doing it all at once, but there is a trick that works
(that I wish I’d thought of myself).

"fjjcsort3"<-
function(x)
{

xatt <- attributes(x)
ans <- x[order(col(x), x)]
attributes(ans) <- xatt
ans

}

After making sure that it does what we want, we time it like the others:

> p.unix.time(for(i in 1:10) fjjcsort3(jjm))
comp time clock time memory
9.130001 9 2875944

> p.unix.time(fjjcsort3(jjm2))
comp time clock time memory

13.25 14 14856744

Now we have some substantial speed improvement.

lapply applies a function to each component of a list:

> lapply(list(a=jjm, b=t(jjm)), dim)
$a:
[1] 5 3

$b:
[1] 3 5

S Poetry c©1998 Patrick J. Burns v1.0

78 CHAPTER 4. VOCABULARY

sapply is used in the same situations as lapply, but generally returns a sim-
plified object. When the function being applied returns a single number in
each case, then the result of sapply is the same as unlist of the same call to
lapply. If the function returns vectors that are all one length, then these two
are different:

> unlist(lapply(list(a=jjm, b=t(jjm)), dim))
a1 a2 b1 b2
5 3 3 5

> sapply(list(a=jjm, b=t(jjm)), dim)
a b

[1,] 5 3
[2,] 3 5

sapply produces a matrix when all of the results are the same length. If the
results vary in length, then sapply is the same as lapply.

DANGER. Internal generic functions (see page 225) do not work correctly in
lapply or sapply.

> lapply(list(jjm, as.data.frame(jjm)), dim)
[[1]]:
[1] 5 3

[[2]]:
NULL

The workaround is to write a wrapper function:

> lapply(list(jjm, as.data.frame(jjm)),
+ function(x) dim(x))
[[1]]:
[1] 5 3

[[2]]:
[1] 5 3

This bug has sometimes been attributed to the fact that lapply is internal in
recent versions of S-PLUS, but the output above was from Version 3.1 where
lapply uses a for loop.

lapply and sapply can take a vector as their first argument. One use
of this is to apply functions where you want more than one of the arguments
to change. The following example assumes that we have two lists of matrices
and we want the result to be a list whose components are the products of the
corresponding components of the original lists.

S Poetry c©1998 Patrick J. Burns v1.0

4.2. THE APPLY FAMILY 79

> lapply(seq(along=jjalist), function(i, x, y)
+ x[[i]] %*% y[[i]], x=jjalist, y=jjblist)

The trick is to write a function whose first argument is used to subscript the
other arguments.

The following three vectors are used in the discussion of tapply.

> jjwt
dorothy harold munchkin stevie

14 15 2 4
> jjgender
[1] "female" "male" "female" "female"
> jjtype
[1] "corgi" "corgi" "cat" "cat"

tapply is used in situations where you have one or more categories, but there
is not necessarily an equal number of points in each combination of categories.
This is sometimes called a ragged array. Here we look at the mean of jjwt
within each combination:

> tapply(jjwt, list(jjgender, jjtype), mean)
cat corgi

female 3 14
male NA 15

> mode(.Last.value)
[1] "numeric"

This is a typical numeric matrix, but with a missing value because there are no
male cats. However, the result of the following command gives us a matrix of
the same shape again, but this time the mode of the matrix is list:

> jjlistmat <- tapply(jjwt, list(jjgender, jjtype),
+ function(x) x)
> jjlistmat

cat corgi
female numeric, 2 14

male NULL, 0 15
> jjlistmat["female", "cat"]
[[1]]:
munchkin stevie

2 4

> jjlistmat["female", "cat"][[1]]
munchkin stevie

2 4

S Poetry c©1998 Patrick J. Burns v1.0

80 CHAPTER 4. VOCABULARY

> jjlistmat["female", "corgi"]
[[1]]:
dorothy

14

Version 3.4 of S-PLUS added a simplify argument to tapply which you can
set to FALSE to ensure that you always get an object of mode list.

The FUN argument is optional in tapply. When FUN is not given, then the
result is a vector of indices into the array that is created when FUN is given.
(Logically, the first argument could be optional when FUN is missing since its
values are not used, but it is used for its length, and hence still required.) Here
we use tapply without FUN to produce a vector to be used by split:

> split(jjwt, tapply(jjwt, list(jjgender, jjtype)))
$"1":
munchkin stevie

2 4

$"3":
dorothy

14

$"4":
harold

15

The names of this list show that tapply did return the indices for jjlistmat.
The last two results are essentially equivalent.

We can make the list that split creates look more inviting by changing the
category we give it:

> split(jjwt, paste(jjgender, jjtype))
$"female cat":
munchkin stevie

2 4

$"female corgi":
dorothy

14

$"male corgi":
harold

15

An alternative to tapply that is in S-PLUS is by. This is object-oriented
and can do some things that tapply can’t.

S Poetry c©1998 Patrick J. Burns v1.0

4.3. PEDESTRIAN 81

4.3 Pedestrian

First is a list of the truly pedestrian, few of these functions will be discussed
more than briefly. The apparition of these faces in the crowd; 14

abs sqrt exp log log10 sum prod cumsum cumprod min max
pmin pmax cummin cummax range gamma lgamma

round signif trunc ceiling floor

sin cos tan asin acos atan
sinh cosh tanh asinh acosh atanh

Re Im Mod Arg Conj

length c list unlist names attributes attr array
dim dimnames unique duplicated

matrix nrow ncol row col rbind cbind t crossprod
solve backsolve eigen svd qr chol kronecker

scale interp approx fft

Most of the mathematical functions accept complex as well as numeric inputs.
Functions that are S-PLUS additions that may not be in other versions are
cumprod, cummax, cummin and kronecker.

The rep function—one of the most useful in S—was discussed earlier. If you
missed it, go back to page 29.

The order function produces the vector of indices that will sort a vector.
That is,

x[order(x)]

is the same as

sort(x)

order is useful when you want to sort several vectors in parallel:

xord <- order(x)
xsort <- x[xord]
ysort <- y[xord]

xsort is actually sorted; ysort probably isn’t sorted but it is in the order that
made x sorted. A more common example is to sort the rows of a matrix relative
to one of the columns:

S Poetry c©1998 Patrick J. Burns v1.0

82 CHAPTER 4. VOCABULARY

xmat[order(xmat[,1]),]

If the order to use depends on more than one vector—with secondary vectors
breaking ties—then order is also used:

xyzord <- order(x, y, z)

An example of this use is in the fjjcsort3 function on page 77.
To reverse the order of a vector or list, use the rev function. So you might

have

xord.bigfirst <- rev(order(x))

paste is very useful for dealing with character data. Any number of ar-
guments can be given to it plus the two special arguments sep and collapse
(which must be given by their full names). A character vector is created which
is as long as the longest argument, shorter arguments are replicated. The sep
argument is a character string that is placed at each spot that is pasted together.
The collapse argument turns the result into a single string. The command

paste(1:9, "000", sep=",", collapse=" ")

results in the single string

"1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000"

nchar returns a vector which is the count of the number of characters in
each element of its argument. For example

nchar(state.name)

is a numeric vector of length 50 containing the number of letters (and spaces)
in each state name.

DANGER. Note that backslash-something counts as just one character, not
the number of keystrokes that you need to type to get it.

substring takes a character vector, a numeric vector of the first character
to be used, and a numeric vector of the last character to be used (which defaults
to some large number). These arguments are replicated to each be as long as
the longest, and the result is a vector of substrings. To break a string into
individual characters do:

S Poetry c©1998 Patrick J. Burns v1.0

4.3. PEDESTRIAN 83

substring(x, 1:nchar(x), 1:nchar(x))

If for a particular element last is less than first, then the result for that
element will be the empty string. In particular, last can be zero.

grep returns the indices of a character vector (second argument) that match
the pattern (first argument). When you use the grep function, it is tempting to
think of Unix wildcarding as with Unix ls. This is especially true when using
the pattern argument to objects which creates a call to grep. But instead
you need to think of regular expressions.

DANGER. The behavior of grep may be somewhat machine dependent.

> jjgreptest
[1] "abc" "a.bc" "a\\bc" "a\tbc" "aabbcc"

> grep(".", jjgreptest) # finds everyone
[1] 1 2 3 4 5
> grep("\.", jjgreptest) # still finds everyone
[1] 1 2 3 4 5
> grep("\\.", jjgreptest) # finds the dot
[1] 2

Now I search for backslashes:

> grep("\\\\\\\\", jjgreptest)
[1] 3

There are 8 backslashes in the command above—escape characters grow in pow-
ers of two.

> grep("\\\t", jjgreptest)
[1] 4

DANGER. If there are any newlines in your strings, you are in trouble:

> jjgreptest2
[1] "abc" "a.bc" "a\\bc" "a\nbc" "aabbcc"
> length(jjgreptest2)
[1] 5
> grep("bc", jjgreptest2)
[1] 1 2 3 5 6

S Poetry c©1998 Patrick J. Burns v1.0

84 CHAPTER 4. VOCABULARY

It is a little unusual to see something in the 6th element of a 5-element vector.

A couple of specialized S functions that deal with character strings are
abbreviate and make.names.

Access Unix functionality with the unix function. The first argument is a
character string that gives the Unix command. The output argument is an
important control:

> jjd1 <- unix("date")
> jjd1
[1] "Wed Mar 26 15:22:23 PST 1874"
> jjd2 <- unix("date", out=F)
Mon Nov 28 15:22:45 GMT 1757
> jjd2
[1] 0

When output is TRUE (the default), then the output of the Unix command
is captured in an S character vector (one element for each line of the output)
and returned. If output is FALSE, then the output of the command goes to
standard-out and the return value in S is the status of the Unix command. The
Unix convention is that 0 means no problem and a non-zero value means some
type of error. So S code might look something like:

if(status <- unix(cmd, out=F))
stop(paste("Unix trouble, code", status))

If you have several commands, you need to put them all into one string with
the commands separated by semicolons or newlines:

> cmds <- c("date", "echo $SHOME")
> unix(paste(cmds, collapse=";"), out=F)
Sun Oct 14 20:51:20 EST 1894
/usr/lang/s
[1] 0

There is also an input argument to unix. This is seldom used since usually
inputs are contained in the command argument. The perl function (page 275)
provides a good example of the use of the input argument.

In S-PLUS there is also the unix.shell function which allows you to select
the shell that will be used rather than being forced to use the Bourne shell:

> unix("echo $shell")
[1] ""
> unix.shell("echo $shell", shell="/bin/sh")

S Poetry c©1998 Patrick J. Burns v1.0

4.3. PEDESTRIAN 85

[1] ""
> unix.shell("echo $shell", shell="/bin/csh")
[1] "/bin/csh"

Arrays are generally created with the array function. You may create ma-
trices either with array or with matrix. The advantage of array is that it is
slightly faster (matrix calls array). The advantages of matrix are that you
only need to know one of the dimensions and you can choose to fill along either
columns or rows.

The diag function also creates matrices. The behavior of this function is
highly dependent on its argument. if you give it a single number, it returns an
identity matrix of that size:

> diag(3)
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

If you give it a vector, it returns a square matrix with that vector along its
diagonal:

> diag(c(4.3, 5.7, -2.9))
[,1] [,2] [,3]

[1,] 4.3 0.0 0.0
[2,] 0.0 5.7 0.0
[3,] 0.0 0.0 -2.9

If you give it a matrix, it returns the diagonal of the matrix:

> diag(freeny.x)
[1] 8.79636 4.70217 5.83112 12.98060
> diag(as.matrix(3))
[1] 3

There are arguments to control the shape of the result, and there is an assign-
ment form to change the diagonal of a matrix.

DANGER. When an array with three or more dimensions is given to diag,
then it is treated as a simple vector (creates a large diagonal matrix) rather
than extracting some definition of the diagonal from the array.

S Poetry c©1998 Patrick J. Burns v1.0

86 CHAPTER 4. VOCABULARY

lower.tri returns a logical matrix the same size as its argument. Its value is
TRUE for all elements below the diagonal. The S-PLUS (version 3.2 and later)
version of the function has a diag argument that allows the diagonal elements
to be TRUE also. Similar functionality can be achieved with row and col; for
example, to get the super-diagonal do:

> row(jjmat) - col(jjmat) == -1
[,1] [,2] [,3] [,4] [,5]

[1,] F T F F F
[2,] F F T F F
[3,] F F F T F
[4,] F F F F T
[5,] F F F F F

A command like

solve(A) %*% x # avoid this

is an inefficient use of solve. The reason that solve is not called something
like invert is precisely this case. We don’t really care about the inverse of A,
we only want the final answer. The more efficient command is:

solve(A, x)

backsolve is available when you have a triangular set of equations to solve.

Given one or more vectors that can be thought of as categories, the table
function counts up the number of occurrences in each combination. It is called
“table” because of the statistical concept of a contingency table, but non-
statisticians may think of it as a binning function.

> table(jjgender)
female male

3 1
> table(jjtype)
cat corgi

2 2
> table(jjgender, jjtype)

cat corgi
female 2 1

male 0 1

Somewhat related is the cut function. While table counts the number of
occurrences of categories, cut breaks numerical data into categories. This is
another sense of binning.

S Poetry c©1998 Patrick J. Burns v1.0

4.3. PEDESTRIAN 87

DANGER. Do not abbreviate the breaks argument of cut to break:

> cut(jjwt, break=seq(0,25,by=5))
Syntax error: "=" used illegally at this point:
cut(jjwt, break=

break is a reserved word in S, so the parser is ever on the lookout for it. Any
of the following forms are acceptable though:

> cut(jjwt, brea=seq(0,25,by=5))
[1] 3 3 1 1
attr(, "levels"):
[1] " 0+ thru 5" " 5+ thru 10" "10+ thru 15"
[4] "15+ thru 20" "20+ thru 25"
> cut(jjwt, breaks=seq(0,25,by=5))
[1] 3 3 1 1
attr(, "levels"):
[1] " 0+ thru 5" " 5+ thru 10" "10+ thru 15"
[4] "15+ thru 20" "20+ thru 25"
> cut(jjwt, "break"=seq(0,25,by=5))
[1] 3 3 1 1
attr(, "levels"):
[1] " 0+ thru 5" " 5+ thru 10" "10+ thru 15"
[4] "15+ thru 20" "20+ thru 25"

Order dependent counting is done with the S-PLUS function rle (run-length
encoding).

The diff function performs differencing of successive elements. When x is
a vector, then

diff(x)

is equivalent to

x[-1] - x[-length(x)]

however, diff has arguments to control the number of differences, and the lag.
Also diff does each column of a matrix separately.

aperm stands for array dimension permutation. Consider the three-dimensional
array:

S Poetry c©1998 Patrick J. Burns v1.0

88 CHAPTER 4. VOCABULARY

> jja

, , 1
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

, , 2
[,1] [,2] [,3]

[1,] 7 9 11
[2,] 8 10 12

, , 3
[,1] [,2] [,3]

[1,] 13 15 17
[2,] 14 16 18

, , 4
[,1] [,2] [,3]

[1,] 19 21 23
[2,] 20 22 24
> dim(jja)
[1] 2 3 4

aperm is usually used with two arguments—the array to be permuted and the
permutation. The ith element of the permutation vector is the dimension in the
current array that will be the ith dimension in the resulting array.

> aperm(jja, c(2,3,1))

, , 1
[,1] [,2] [,3] [,4]

[1,] 1 7 13 19
[2,] 3 9 15 21
[3,] 5 11 17 23

, , 2
[,1] [,2] [,3] [,4]

[1,] 2 8 14 20
[2,] 4 10 16 22
[3,] 6 12 18 24

If the ith element of the vector that you have contains the dimension in the
result that is the ith current dimension, then use order on the vector:

> aperm(jja, order(c(2,3,1)))

S Poetry c©1998 Patrick J. Burns v1.0

4.3. PEDESTRIAN 89

, , 1
[,1] [,2]

[1,] 1 2
[2,] 7 8
[3,] 13 14
[4,] 19 20

, , 2
[,1] [,2]

[1,] 3 4
[2,] 9 10
[3,] 15 16
[4,] 21 22

, , 3
[,1] [,2]

[1,] 5 6
[2,] 11 12
[3,] 17 18
[4,] 23 24

Let’s review. If the values are for the input and the indices are for the result,
then the vector is appropriate to use as the perm argument. If the values are
for the result and the indices are for the input, then you need to use order.

Be careful when testing with three-dimensional arrays since (2, 3, 1) and
(3, 1, 2) are the only permutations that do not map to themselves.

> jjperm3
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1 2 2 3 3
[2,] 2 3 1 3 1 2
[3,] 3 2 3 1 2 1
> jjperm3o <- apply(jjperm3, 2, order)
> jjperm3o

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 1 2 3 2 3
[2,] 2 3 1 1 3 2
[3,] 3 2 3 2 1 1
> apply(jjperm3 != jjperm3o, 2, all)
[1] F F F T T F
> jjperm3[,.Last.value]

[,1] [,2]
[1,] 2 3
[2,] 3 1
[3,] 1 2

S Poetry c©1998 Patrick J. Burns v1.0

90 CHAPTER 4. VOCABULARY

The .Machine object is a list of the machine constants, like largest integer
and epsilon. It is often useful to pass pieces of this into C or Fortran code that
you have written to eliminate machine dependency of your S functions. pi is
another number that is a part of the S language.

4.4 Input and Output

Commonly a more frustrating part of computing is getting data from one pro-
gram to another. S is no exception. Essentially all data that have not already
been made into S objects must come into S via scan, which reads ASCII
data. The use of scan ranges from very simple, to exceptionally complicated.
A strange, but at times useful, way to use scan is to read from standard input
rather than from a file—cutting numbers from some window and pasting to the
S session is one example. In the remainder of the discussion of scan, the input
will be assumed to be a file.

If a simple vector is to be read in, then you merely need to give the name of
the file and possibly an indication of what mode to give the data (numeric is the
default). Otherwise, the file is assumed to be in the form of records and fields.
Typically there is one record per line in the file, but this is not mandatory. By
default, fields are assumed to be separated by white-space, that is, by spaces,
tabs or newlines. The sep argument to scan controls the separation character,
and this default is denoted by sep="". (Since a separator of no characters
doesn’t make sense, the empty string was available for a compound choice.) If
the file contains strings containing spaces, then the default separator will not
work. Tabs and semicolons are popular choices for separators. Only the first
character of the sep argument is used.

Once past the problem of the separator, the key argument to scan is what.
The what argument provides a template for the resulting object. Here are three
examples:

jjnum <- scan("numbers.txt")
jjchar <- scan("text.txt", "", sep="\t")
jjrecords <- scan("records.txt", list(name="", age=0,

NULL, volume=0), sep=";")

The first example is with a file that contains a bunch of numbers separated by
white-space; the result, jjnum, is a numeric vector. The second example yields
a character vector and the separator is a tab, presumably to allow spaces within
strings. The final example will result in a list with four components. The first
component will be named "name", will be character, and will be read from the
first field of each record. The second component is numeric and corresponds to
the second field in the file. The third field is not read because of the NULL in
the third component of the what argument, and this component will be NULL in
jjrecords. The fourth component is once again numeric. If the file contained

S Poetry c©1998 Patrick J. Burns v1.0

4.4. INPUT AND OUTPUT 91

more than four fields per record, or if not all records were on a single line, then
the statement above would be wrong. The flush argument allows you to ignore
unused fields, and multi.line allows records to span more than one line in the
file.

If your file is in fixed format (meaning each field takes a certain number of
characters), then there are two ways of getting the data read in. The easiest if
you have S-PLUS is to use the widths argument to scan, which takes a vector
of the field widths. The other way is to use make.fields which creates a new
file that contains the fields interspersed with a separator.

If there are some parts of the file that you don’t want to read in, then use
the skip and n arguments. skip says how many lines at the top of the file not
to read. The main purpose of this argument is when there is header information
that does not look like the actual data. The n argument says how many items
in all (records times fields) are to be read.

Some files don’t conform to the records and fields format, and it seems impos-
sible to get what you want. There are two strategies you can use, possibly even
in conjunction. You can read everything into S—probably all as character—and
straighten it out with S commands. You can use tools like Perl, awk and sed to
convert the file to a more hospitable format.

If you are reading in a large object and you know how big it is, then you
can save some memory by creating the what argument to be the same size as
the final result. As scan reads the file, it keeps increasing the size of where
it is putting the data. This wastes memory in two ways. It grows the objects
incrementally so it fragments memory some, and the last time that it grows, it
almost surely will overshoot the size that it needs.

DANGER. You will probably have problems if you try to read in numbers
that were double-precision Fortran. Fortran uses a “d” rather than an “e” to
indicate the exponent. scan does not understand the “d” and assumes that the
value is not a valid number. You need to convert (carefully) the “d”s to “e”s
before using scan. (Or possibly read them into S as character, and then do the
conversion.)

If your file is very nicely arranged in records and fields, then you can use
read.table to read the file and return a data frame. It does accept fixed format
files.

DANGER. There is no free lunch. The convenience of read.table is dimin-
ished by the fact that it will decide on its own to use a field as the row names
of the result. The field will then not appear in the data frame. I suggest that
you always give a value for the row.names argument to avoid surprises.

S Poetry c©1998 Patrick J. Burns v1.0

92 CHAPTER 4. VOCABULARY

For transferring S objects around, see the discussion starting on page 96
regarding data.dump, dump, data.restore, source and restore.

S-PLUS (and statlib) has a sas.get function to import data from SAS.
There are also several commercial programs that allow easy transfer between a
number of packages including S.

print and cat both create printed output, but in most other respects are
quite different. print produces representations of S objects, while cat is a
low-level function that interprets character strings. If you print a character
string with a backslash-n in it, then the backslash-n will be visible within the
string (and the string will generally be surrounded by quotes). But if you cat
that same string, then the text following the backslash-n will be on the next
line of output—cat interprets the backslash-n rather than just reproducing it.
print is a generic function, and many print methods use cat to do part of the
printing.

> print("\\blah\nblah")
[1] "\\blah\nblah"
> cat("\\blah\nblah")
\blah
blah>

Notice that the S prompt is directly after the string that was catted. This is
because there was not a backslash-n at the end of the string.

When you are writing a print method, the last line of the function should
be:

invisible(x)

This makes the return value x while avoiding an infinite loop of printing. The
name of the argument should definitely be x (see the discussion of arguments
to generic functions on page 128). The reason to have the return value be the
input is so that

jj <- print(myfun())

will work the same as

jj <- myfun()
print(jj)

You also want to have the ... form in the argument list of your print
methods. Often your print method will call print and you can pass ... to
those calls. Even if you don’t have print calls, you want ... because your
method may be called by another print call that uses arguments that your
method does not have. An example would be if an object of your class is in a
list that is printed.

S Poetry c©1998 Patrick J. Burns v1.0

4.4. INPUT AND OUTPUT 93

While print always prints to standard-out, you can tell cat to send its
characters to a file. cat takes an arbitrary number of arguments—each element
of the first argument is printed, then each element of the second argument and
so on. There are numerous additional arguments to cat to control its output.
Note that cat does not obey the digits option, as print and format do. Thus
numbers printed by cat have their full precision.

The format function is mainly used to turn numbers into suitably aligned
character strings. It returns strings that all have the same number of characters.
In S-PLUS version 3.2 and later, you can control whether or not numbers are
written in scientific notation among other features. Notice the blank spaces so
that the decimal points line up:

> format(c(222, pi))
[1] "222.000000" " 3.141593"
> as.matrix(format(c(222, pi)))

[,1]
[1,] "222.000000"
[2,] " 3.141593"

See the justify function on page 278 for similar functionality.

Although write is likely to fool you more than help you, the S-PLUS
function write.table is useful. write.table writes a matrix or a data frame
to an ASCII file as you would expect it to be written.

The sink function allows you to send the output from S commands to a file.
Unfortunately in version 3 of S there is no convenient way to send the output
both to the screen and to the file. Here is an example of how to put both the S
commands and their results into a file:

> options(echo=T)
> sink("jj.out")
sink("jj.out")
> freeny.x
> sink()
> 1:3
1:3
[1] 1 2 3
> options(echo=F)
options(echo=F)

The echo option, if TRUE, means that the command is repeated, and hence
it ends up in the sink file. We can see what happens after the second sink
command (with no arguments) which changes the output back to normal. The
echo option doesn’t take effect until after the option call.

S Poetry c©1998 Patrick J. Burns v1.0

94 CHAPTER 4. VOCABULARY

DANGER. If you are using a version of S prior to S-PLUS version 3.4, you
can not nest sink commands. In the older versions, each call to sink rescinds
the previous one. In particular, dump uses sink so if you use dump while a
sink is in effect, the dump command will work okay but your sink will be wiped
out—output will go to standard-out as usual.

4.5 Synonyms

This section discusses functions that are similar to another. Understanding the
differences can speed programming and eliminate bugs. We can find no scar,
But internal difference, Where the meanings, are – 15

When you have a vector of strings to match and they are possibly abbre-
viated, then match won’t do. What does work is pmatch, and charmatch in
S-PLUS. (These two functions were produced at about the same time in two
different locations.) They are almost identical in effect, the main difference
occurs when there is an ambiguous match.

The following commands have ambiguous matches for "Ala" and "New" since
both "Alaska" and "Alabama" partially match "Ala", and several state names
begin with "New".

> pmatch(c("Ala", "Mont", "New"), state.name)
[1] NA 26 NA
> charmatch(c("Ala", "Mont", "New"), state.name)
[1] 0 26 0
> pmatch(c("Ala", "Mont", "New"), state.name, nomatch=Inf)
[1] Inf 26 Inf

pmatch considers an ambiguous match to be nomatch while charmatch always
returns 0 for an ambiguous match.

There are two additional differences between them. The first is that pmatch
does not match empty strings:

> charmatch("", c(letters, ""))
[1] 27
> pmatch("", c(letters, ""), nomatch=0)
[1] 0

The second is that pmatch has a duplicates.ok argument.

> pmatch(c("a", "b", "a"), letters)
[1] 1 2 NA

S Poetry c©1998 Patrick J. Burns v1.0

4.5. SYNONYMS 95

> pmatch(c("a", "b", "a"), letters, dup=T)
[1] 1 2 1
> charmatch(c("a", "b", "a"), letters)
[1] 1 2 1

charmatch forces duplicates to be okay.
The unabbrev.value function (page 218) uses pmatch.

The rm function is a short cut for remove. remove takes a character vector
of the names of the objects to be deleted. rm just takes the unquoted names of
the objects. The two following commands would do the same thing:

remove(c("jja", "jj45"))
rm(jja, jj45)

rm removes objects only from the working database; remove has arguments
where and frame so that you can select the location of the deletions.

The seq function is a generalization of the : operator, which it calls. The :
operator is usually given integers, and always steps 1 or -1. seq allows arbitrary
step sizes (the default is 1), starting point (the default is 1), ending point (the
default is 1), and length.

A handy argument is along. The statement

seq(along=x)

returns a sequence starting at 1 that is as long as x. The important part is that
if x has length zero, then the sequence has zero length also—this is very useful
in for loops.

The if construct, the ifelse function, and the operators &&, &, || and |
are all related. if takes a logical value that is meant to be just one long;
if the length is greater than one, then the first value is used and a warning is
issued:

> if(c(F, T)) "true" else "false"
[1] "false"
Warning messages:

Condition has 2 elements: only the first used in:
if(c(F, T)) "true" else "false"

Do not ignore such warnings—it means you have at least done something silly
and more likely that there is a bug. You may have forgotten to use any or all.

The && (and control operator) and || (or control operator) operators go
with if and length one logicals. These do not evaluate their second argument

S Poetry c©1998 Patrick J. Burns v1.0

96 CHAPTER 4. VOCABULARY

if they already know the answer; for instance || does not need to look at the
second argument if the first one is TRUE.

On the other hand, & and | are vectorized “and” and “or” operators, so it is
not appropriate that they should reserve judgment on evaluating their second
argument. The ifelse function performs a vectorized decision, so it needs to
use & and |. By the way, there is the xor function which performs a vectorized
exclusive-or operation.

ifelse is very S in being vectorized, but it is less useful than you might
think. For instance, the statement:

x <- ifelse(is.na(x) | x < 0, 0, x)

which changes missing values and negatives in x to 0, can be done more directly
with

x[is.na(x) | x < 0] <- 0

Let’s summarize. Suppose we have two (length one) logical values called
logical.val1 and logical.val2, and we have two logical vectors with length
greater than one called logical.vec1 and logical.vec2. Then here are several
statements and their acceptability:

if(logical.val1 && logical.val2) 0 else 1 # correct
ifelse(logical.vec1 & logical.vec2, 0, 1) # correct
if(logical.val1 & logical.val2) 0 else 1 # slightly inefficient
if(logical.vec1 && logical.vec2) 0 else 1 # wrong
if(logical.vec1 & logical.vec2) 0 else 1 # wrong
ifelse(logical.vec1 && logical.vec2, 0, 1) # wrong
ifelse(logical.val1 & logical.val2, 0, 1) # slightly inefficient

There are two ways of putting ASCII representations of S objects into files.
(If you want just the values without retaining the characteristics of the S object,
then use write.table (page 93) or cat.) dump creates representations that
are (relatively) easy for humans to comprehend—the format is S commands.
data.dump also produces ASCII files, but the format is decidedly tailored to-
wards machines rather than humans. The reason that there are two choices is
that files created by dump can take an enormous amount of memory (and hence
time) when they are read back into S. The larger the size of the objects, the
more problem there is with restoring a dump file. Since functions are generally
small and commonly read by humans, dump is usually used for them. Most often
data.dump should be used for other types of objects.

If a file was produced by data.dump, then it must be read back into S with
data.restore. There are several ways to read files created by dump. The
most common is to use source. restore is almost like source, but there is a

S Poetry c©1998 Patrick J. Burns v1.0

4.5. SYNONYMS 97

difference that can be important. Essentially, source acts as if the contents of
the file were typed to S, but restore starts up a new session of S and reads
the file. So restore always puts the objects into the working database for
the current directory, while source puts the objects into the current working
database. Because restore starts up a new session, there are going to be
implications for memory usage. Yet another way to read a dump file into S is
to redirect the file while you are in Unix. For example:

% S < myfile.q # Unix command

This also puts the objects into the working database for the current directory.

storage.mode and mode always give the same answer, unless the mode of
the object is numeric. In that case storage.mode is one of "double", "single"
or "integer". Storage mode is generally only of interest when using .C or
.Fortran.

The class function returns the value of the "class" attribute of an object.
data.class does the same if the object has a "class" attribute, but can return
something other than NULL for objects that do not have a class. This looks to
see if it is one of the types of object that was in common use before object-
orientation came along. The possibilities are "matrix"; "array" for arrays that
are not matrices; "ts" for time series; plus categories yield the class they would
have if they were factors.

In S-PLUS there are functions called which.na, which.inf and which.nan.
These are like is.na, etcetera, except that they return a vector of numeric

indices rather than a logical vector. The result of which.na is the indices of the
result of is.na that are TRUE. If you expect an object to be large and to have
few missing values, then using which.na instead of is.na can save a substantial
amount of memory. If x has length one million and contains ten missing values,
then the length of the result of is.na is one million while the result of which.na
is only ten long.

The max and min functions each return a single number that is the maximum
or minimum of all of the numbers in all of the arguments. There are times
when you want a vectorized form that gives the maximum or minimum for each
location among a number of vectors—the pmax and pmin functions do this.
Compare:

> pmin(1:10, 10:1)
[1] 1 2 3 4 5 5 4 3 2 1
> min(1:10, 10:1)
[1] 1

S Poetry c©1998 Patrick J. Burns v1.0

98 CHAPTER 4. VOCABULARY

DANGER. It is not so uncommon to have a bug because max is used where
pmax is needed. These are especially hard to discover and track down. A little
extra thought whenever you use max or min can be a good thing.

The deparse and as.character functions both turn non-character objects
into something of mode character. deparse, as its name implies, returns a
character string that can be parsed by S, the length of the result of deparse is
usually 1 (but not guaranteed to be). as.character thinks in terms of vectors
and always returns an object that has the same length as the input. Using
as.character where deparse is needed can cause some subtle bugs.

4.6 Linguistics

Use stop to create an error condition in a function. If the problem is not serious
enough to warrant an error but is still worth mentioning, then use warning. A
few pointers are given on placing calls to stop and warning on page 33.

Do not confuse warning with warnings. warning is used within functions
to create a warning. warnings is used to look at the warnings that were created
if there were a lot of them.

The exists function takes a character string containing the name of an
object and returns a logical value that states whether or not the object was
found. Arguments can be used to direct the search. This is useful to avoid
an error when the object does not exist. An example is the poet.dyn.load
function on page 24.

The get function goes further than exists and returns the object if it is
found (an error results if it isn’t found, hence one use for exists). Most of
the time get is unnecessary because just giving the name of the object gets it.
But get has several uses. It is used when what you have is a character string
containing the object name, rather than the name itself. The following fragment
should give an indication of when this might occur:

for(i in 1:n) get(paste("data", i, sep=""))

It is used when the name does not parse to a valid object name:

get("dim<-")
get("%*%")
get("valid_name_in_other_language")
"[<-.mathgraph" <- emacs(get("[<-.mathgraph"))

S Poetry c©1998 Patrick J. Burns v1.0

4.6. LINGUISTICS 99

It is used when there is more than one instance of an object name on the search
list, and you want one of the ones that is not first:

get("x", where=4)

It is used when the object is in a database that is not currently on the search
list, or that at least is not guaranteed to be on it.

DANGER. The first argument needs to be a string that is the name of the
object as S knows it. Do not include any of the path for the database there:

get("/usr/me/good.data/x") # probably not what you want
get("x", where="/usr/me/good.data") # more likely right

You can sometimes save some memory with a statement like:

get("x", immediate=T)

This says that you want x but you only care about it for this one instance so it
should not be cached for future reference. The cache that we are avoiding here
starts when a statement is evaluated and is destroyed again when we get back
to the S prompt—it is not the same cache that the keep option controls.

The assign function is in a sense the opposite of get, and is used for many
of the same reasons. You can use it whenever an assignment is made (that is,
it is a synonym for <-), but there are times when you must use it. Use it when
what you have is a character string of the name rather than the name itself.

for(i in 1:n) assign(paste("data", i, sep="."),
scan(paste("file", i, sep="")))

You can use quotes around a name that is being assigned to:

"%myop%" <- fjj

So assign is not necessary here, even if the name is not a valid S name.

DANGER. You can not have a function on the left of an assignment operator
that returns a character string of the names:

paste("data", i, sep="") <- 1:i # THIS WON’T WORK

The assign function is necessary in this case.

assign(paste("data", i, sep=""), 1:i)

S Poetry c©1998 Patrick J. Burns v1.0

100 CHAPTER 4. VOCABULARY

A common use of assign is to assign an object to a location other than the
usual location. From the prompt, this is generally a database later in the search
list:

assign("jj", jj, where=4)

Within a function, this is usually assignments to frame 1 or database 0:

assign("fjJ.X", x, frame=1)

Within a function you can also force the assignment to be written to disk
immediately rather than only being written as you get the S prompt back. An
example is:

assign("jj", jj, where=1, immediate=T)

This form of statement can be very useful, but it is a definite violation of the
no side effects rule—use this sparingly and with good reason.

DANGER. A statement like

assign("x$new", 3)

does not do anything to a component of an object named x. Rather it creates
an object with the unfriendly name x$new:

> x
$a:
[1] 1

> assign("x$new", 3, where=1)
> x
$a:
[1] 1

> get("x$new")
[1] 3

You need to assign the entire object in one go:

> assign("x", c(x, new=3), where=1)
> x
$a:
[1] 1

$new:
[1] 3

S Poetry c©1998 Patrick J. Burns v1.0

4.6. LINGUISTICS 101

Often you want to create a local version of the object and then use assign.

An unusual (but very useful) function is on.exit. This allows you to perform
actions as the function exits—often some cleanup—without getting in the way
of the return value. Oh build your ship of death, your little ark 16

Here is a typical example:

on.exit(par(old.par))
old.par <- par(cex=2)

You, of course, think that I must have these commands in reverse order. But
we do want the on.exit command first, and it’s not going to break—I’ll get to
that. The purpose of these two lines is to set a graphics parameter to a certain
value, and then make sure that the parameter is returned to its previous value
when the function quits. In this case, we could almost get by without on.exit
by resetting the graphics parameter after we do all of the graphics, and then
return whatever it is that we want (in other cases there is no way to do the
necessary cleanup and get the proper return value). However, without on.exit
the graphics parameter will be permanently changed if an error (or interrupt)
occurs between the time that the parameter is changed and it is changed back.
on.exit makes sure that the action is performed whether the function exits
normally or exits due to an error.

Let’s analyze what happens with our on.exit example. If the function exits
normally, then the parameter is changed, changed back, and the function returns
its value (and performs its side effects). If an error occurs after the call to par,
then the on.exit expression is used to change it back. If an error occurs during
the call to par, then old.par doesn’t exist so the on.exit expression will fail
(you’ll get an “Error during wrapup” message), but no matter since the graphics
parameter wasn’t changed anyway. If we had the on.exit call second, then it
would be possible (though highly unlikely) that the parameter get permanently
changed.

The interlude function listed on page 220 creates functions that use on.exit.
Fancier use of on.exit includes adding to the actions to be performed, and
deleting all of the on.exit statements.

A common function to be used in on.exit is unlink. This removes a
file—typically a file that was created within the function calling unlink. A
characteristic use is:

the.filename <- tempfile("Spfun")
on.exit(unlink(the.filename))
the file is created by some command

S Poetry c©1998 Patrick J. Burns v1.0

102 CHAPTER 4. VOCABULARY

inherits in its most common use returns a number (that can be interpreted
as a logical) indicating if a certain string is one of the elements of the object’s
class. It might be used like:

if(inherits(x, "factor")) ...

More involved use is also possible.

Use the idiom deparse(substitute(x)) to create a character string of the
name that was used for x in the call to a function. Labeling plots is a common
example. The sccs function on page 49 uses this. A trivial example is:

> fjjcopy
function(x)
list(name = deparse(substitute(x)), sum = sum(x))
> fjjcopy(freeny.x)
$name:
[1] "freeny.x"

$sum:
[1] 1282.411

> fjjcopy(1:8)
$name:
[1] "1:8"

$sum:
[1] 36

We will learn more about substitute later (page 324), but at this point you
can just think of this as the magic potion that performs this operation.

Many objects have a component or an attribute named call which is an
image of the command that created the object. This is very useful for telling
you what the object represents. The call component or attribute is generally
created with the match.call function.

> fjjcopy
function(x)
list(name = deparse(substitute(x)), sum = sum(x), call

= match.call())
> fjjcopy(freeny.x)
$name:
[1] "freeny.x"

$sum:

S Poetry c©1998 Patrick J. Burns v1.0

4.6. LINGUISTICS 103

[1] 1282.411

$call:
fjjcopy(x = freeny.x)

Let me lobby you to use this convention in your functions. Note that the result
of match.call is not a character string, but rather a language object. And I
plucked a hollow reed 17

Sometimes you have a list of the arguments to give to a function, or that is
the easiest thing to get. In such a case, use do.call:

> jj <- as.list(sample(10, 3))
> do.call("paste", c(jj, sep=", "))
[1] "1, 10, 7"

The genopt function on page 331 shows do.call in a more realistic setting, as
does c.mathgraph on page 308.

If you know how to perform an operation but there doesn’t seem to be a
way to directly do the command with what you have, then there is always the
eval-parse-text idiom. A dumb example is

ans <- eval(parse(text=paste("fjjmain.", method,"(x)",sep="")))

The fjjcheckratop function on page 254 and bind.array on page 289 provide
further examples.

The synchronize function is used to ensure that hash tables associated with
a database are up-to-date. This is only a concern if more than one S session is
using the same database and at least one of them is writing to it. There are
two hash tables involved.

The first is the hash table of names of objects within the database. As
assignments are made in an S session, this hash table is revised, but the session
doesn’t know about changes that are made behind its back. Below we have two
S sessions running and both using the same working database. Session 1 creates
a new object:

S1> jjnew <- 1:10
S1> jjnew
[1] 1 2 3 4 5 6 7 8 9 10

Session 2 doesn’t see the new object until after the call to synchronize:

S2> jjnew
Error: Object "jjnew" not found

S Poetry c©1998 Patrick J. Burns v1.0

104 CHAPTER 4. VOCABULARY

S2> synchronize(1)
NULL
S2> jjnew
[1] 1 2 3 4 5 6 7 8 9 10

The other hash table that can get out of date is the hash table of objects
(rather than object names) that is controlled by the keep option. Generally
only functions are put into this hash table (but see page 47). In this example
both sessions start with jj being 1 through 10.

S1> jj
[1] 1 2 3 4 5 6 7 8 9 10
S1> jj[5] <- 55555
S1> jj
[1] 1 2 3 4 55555 6 7 8
[9] 9 10

S2> jj
[1] 1 2 3 4 55555 6 7 8
[9] 9 10

The second session sees the change in jj, there is no need for synchronize.
But it is different if both sessions have used function fjj and the first session
changes the definition:

S1> fjj
function(x)
1/x
S1> fjj <- function(x) 2/x^2
S1> fjj
function(x)
2/x^2

Because session 2 has fjj in its object hash table, it doesn’t see the revised
version that is in the database until it calls synchronize:

S2> fjj
function(x)
1/x
S2> synchronize(1)
NULL
S2> fjj
function(x)
2/x^2

synchronize can also be used without an argument. Suppose that you
have a for loop that takes a long time to perform each iteration like:

S Poetry c©1998 Patrick J. Burns v1.0

4.6. LINGUISTICS 105

for(i in seq(along = lcf.ans) {
lcf.ans[[i]] <- long.complicated.function(x[i], y[[i]])

}

As this stands, lcf.ans (which we are assuming resides in the working database)
will not be changed (written to disk) until the entire loop is finished. You may
be concerned that the machine will crash before the end of the loop, or you may
want to have the results as they get computed. You can force lcf.ans to be
updated at each iteration with:

for(i in seq(along = lcf.ans) {
lcf.ans[[i]] <- long.complicated.function(x[i], y[[i]])
synchronize()

}

In this case, it would have been better to use assign with immediate=T, but if
lots of things change in the loop, synchronize becomes an easier solution. For
more on this topic, see the chapter on large computations starting on page 355.

The readline function captures a line of text. This is generally used in
functions that interact with the user. Here is an example:

"fjjartshow"<-
function()
{

cat("type ’y’ to get picture ’n’ to quit\n")
repeat {

cat("Do picture? ")
ans <- substring(readline(), 1, 1)
switch(ans,

y = ,
Y = {

plot(1, type = "n",
xlim = c(0, 10),
ylim = c(0, 10),
axes = F, ylab = "",
xlab = "")

polygon(sample(10, 50,
replace = T), sample(
10, 50, replace = T))

}
,
n = ,
N = ,
q = ,
Q = break,

S Poetry c©1998 Patrick J. Burns v1.0

106 CHAPTER 4. VOCABULARY

cat("Say what?"))
}

}

CODE NOTE. In the instructions for using the function there appear to be
only two valid responses, yet the function actually allows more. That is, there
are some undocumented features. Undocumented features are fine as long as
you are not going to want to change them. There should be a balance between
the users’ current convenience and the programmer’s future options.

If the text that is to be read is S language, then it is better to use parse
to capture the text than to use readline. But in the case of fjjartshow the
input is neither S language nor arbitrary text, but merely a simple choice. The
menu function is the proper tool for this case. Here is a revised artshow:

"fjjartshow2"<-
function(corners = 50, sieve = 10)
{

repeat {
switch(menu(c("(another) plot",

"help on polygon"),
title =
"type 0 to exit") + 1,

break,
{

plot(1, type = "n",
xlim = c(0, sieve),
ylim = c(0, sieve),
axes = F, ylab = "",
xlab = "")

polygon(sample(sieve,
corners, replace = T
), sample(sieve,
corners, replace = T))

}
,
help("polygon"))

}
invisible()

}

menu takes a character vector of choices and optionally a title to be printed
above each menu. The user will be shown a numbered menu of the choices and
prompted to select one. It is conventional to have 0 mean “exit” which is what
this function does. Here is a session where just one plot is created, and the help
file is not chosen at all:

> fjjartshow2()

S Poetry c©1998 Patrick J. Burns v1.0

4.7. NUMERICS 107

type 0 to exit
1: (another) plot
2: help on polygon
Selection: 1
type 0 to exit
1: (another) plot
2: help on polygon
Selection: 0
>

Periodically you want the return value of a function not to be printed auto-
matically. The invisible function does this. Graphics functions, for example,
often return something invisibly. Note, though, that invisibility is a trickier
concept than you might think—see how the soptions function on page 45 does
it, and see page 219 for an explanation of why that works.

4.7 Numerics

There are several functions for matrix decompositions. qr performs a QR de-
composition; this is the decomposition on which the least squares regressions
are based. Singular value decompositions are done with svd, and eigen does
eigen decompositions. Choleski decompositions are computed with either chol
or choleski. chol merely returns the triangular matrix, while choleski
returns a list that includes the condition number and the pivoting (reordering
for numerical accuracy).

Many (but not all) of the functions described in the rest of this section are
S-PLUS functions.

You can numerically integrate an S function with integrate. Infinite
limits are allowed. (The line.integral function on page 320 is an alternative
with advantages and disadvantages.)

DANGER. The function that you give to integrate must be vectorized. If
it isn’t, you can get wrong answers.

> integrate(function(x) min(x, 2), 1, 4)$integral
[1] 0.5736171
Warning messages:

subdivision limit reached in: integrate.f(f, lower,
upper, subdivisions, rel.tol,

> integrate(function(x) pmin(x, 2), 1, 4)$integral
[1] 5.499997

S Poetry c©1998 Patrick J. Burns v1.0

108 CHAPTER 4. VOCABULARY

Don’t count on there being a warning message when you get it wrong.

DANGER. The integrate function doesn’t follow the capitalization conven-
tion on its arguments that is discussed on page 27 so it is possible that the extra
arguments to your function can collide with arguments of integrate. Here is
an example where we are integrating with respect to x, and s is an additional
argument to the function.

> integrate(function(x, s) x*s, 1, 3, s=20)
Error in qf15(f, lower, upper, aux = ..: singularity

encountered
Dumped
> traceback()
Message: singularity encountered
5: stop("singularity encountered")
4: qf15(f, lower, upper, aux = optargs(list(...), f, 1))
3: integrate.f(f, lower, upper, subdivisions, rel.tol,
2: integrate(function(x, s)
1:

The call fails, and the traceback doesn’t enlighten us at all. What is happening
is that the s that we pass in is being used as the value of the subdivisions
argument to integrate.

Symbolic derivatives of some simple functions are given by deriv or D. D
has the more human face:

> D(expression(sin(x)/x), "x")
cos(x)/x - sin(x)/x^2
> D(expression(sin(x) * y/x), "x")
(cos(x) * y)/x - (sin(x) * y)/x^2

But you can get an actual function from deriv:

> deriv(expression(sin(x) * y/x), "x", function(x, y) NULL)
function(x, y)
{

.expr2 <- (sin(x)) * y

.value <- .expr2/x

.grad <- array(0, c(length(.value), 1), list(
NULL, "x"))

.grad[, "x"] <- (((cos(x)) * y)/x) - (.expr2/(

S Poetry c©1998 Patrick J. Burns v1.0

4.7. NUMERICS 109

x^2))
attr(.value, "gradient") <- .grad
.value

}

This returns a vector of the expression which has a gradient attribute containing
the derivative.

The approx function performs linear interpolation given two vectors.

More commonly useful is the interp function that performs interpolation
to a regular two-dimensional grid given three vectors. In particular, this is often
used to create output that is suitable as input to the graphics functions persp,
contour and image.

Use polyroot to find the roots of a polynomial. The coefficients may be
complex as well as numeric, and the degree can be as high as 48.

To find some root of a non-polynomial univariate function, use uniroot.

optimize finds a local minimum of a univariate function.

Both nlminb and nlmin minimize general nonlinear functions. They each
have their little quirks, but the only essential difference between them is that
nlminb allows box constraints to be put on the parameters while nlmin does
not. They are both based on PORT routines. The portoptgen function (see
starting at page 344) provides an alternative.

The ms function provides optimization from a different perspective. It takes
a formula and a data frame. The formula is applied to each row of the data
frame, and the result is summed across rows. It seeks a minimum of that sum.

The fft function performs a fast Fourier transform. In addition to the
statistical operation of spectral analysis, this can be used for convolutions. fft
accepts arrays as well as vectors, so it performs higher dimensional transforms.

Other numerical functionality is performed by vecnorm, kronecker, peaks,
chull (for two-dimensional convex hulls), spline, ivp.ab (for differential equa-
tions), napsack and stepfun.

The primes function may be found in the progexam library to S-PLUS.
This finds prime numbers. The S-PLUS Programmer’s Manual shows a factors
function, but it doesn’t appear in the library.

S Poetry c©1998 Patrick J. Burns v1.0

110 CHAPTER 4. VOCABULARY

4.8 Randomness

Pseudo-random functions within S use a single random number generator. The
seed for the generator is stored in .Random.seed, which is a vector of 12 small
integers. As far as I know, this is robust, but it is not a wise idea to assign
anything to .Random.seed that was not previously a random seed.

If you want to reproduce results of random functions, then you need to save
the seed and restore it just before the call that is to reproduce the results:

> jjsave.seed1 <- .Random.seed
> runif(4)
[1] 0.5701077 0.5981965 0.2946985 0.4174643
> runif(4)
[1] 0.93036326 0.93932162 0.08411177 0.94985548
> .Random.seed <- jjsave.seed1
> runif(4)
[1] 0.5701077 0.5981965 0.2946985 0.4174643

DANGER. Do not assign .Random.seed within a function, or anywhere else
that is not a database on the search list.

> fjjran1
function(n = 3)
{
DO NOT DO THIS

.Random.seed <- .Random.seed
for(i in 1:n) {

print(runif(3))
}
invisible()

}
> fjjran1()
[1] 0.5157684 0.5730458 0.7764676
[1] 0.5157684 0.5730458 0.7764676
[1] 0.5157684 0.5730458 0.7764676
> fjjran1()
[1] 0.9350564 0.7920594 0.6019266
[1] 0.9350564 0.7920594 0.6019266
[1] 0.9350564 0.7920594 0.6019266

Here’s the explanation for what is happening. The random functions look for
the first value of .Random.seed that they see, which in this case is the value
set in fjjran1. When a random function is done, it updates .Random.seed
on the working database. So while we stay inside fjjran1 we only see one
version of .Random.seed even though new versions are being written to the

S Poetry c©1998 Patrick J. Burns v1.0

4.8. RANDOMNESS 111

working database. When the second call to fjjran1 starts, it sees the value of
.Random.seed that was updated on the last loop of the previous call to fjjran1.

Another way of ensuring reproducibility is to use set.seed. This takes
an integer that should be between 1 and 1024, and sets the random seed to a
certain value based on the integer given.

> set.seed(1023); print(.Random.seed)
> [1] 21 14 49 16 62 1 32 22 36 23 28 3
> set.seed(-1); print(.Random.seed)
> [1] 21 14 49 16 62 1 32 22 36 23 28 3

The example above shows that set.seed returns the same answer for arguments
that are the same modulo 1024.

When a function that uses randomness is stopped on an error or interrupted,
the random seed will not be updated. The technical reason for this is that
assignments are not committed until the execution of the function is finished.
This is the proper behavior—you wouldn’t want the seed to be changed when
an error occurs. If the seed did change, then you couldn’t be sure that your
fix to the function eliminated the bug—it could be that the new set of random
numbers doesn’t exhibit the bug.

S contains functions for a number of probability distributions. Usually there
are four functions for each distribution. The function names begin with one
of the four letters ‘r’, ‘d’, ‘p’, ‘q’, and end with a code for the distribution.
Examples are runif, dunif, punif, qunif, and rnorm, dnorm, pnorm, qnorm.
The ‘r’ stands for random, ‘d’ is for density, ‘p’ is for probability, and ‘q’ is
for quantile. The random functions generate numbers from the distribution,
the probability functions give the probability of being less than or equal to the
value given (probability distribution function), and the quantile functions return
the value where the distribution function achieves the probability given. These
functions are vectorized.

DANGER. You need to be careful when you get to the boundary of parameter
spaces.

> jjsd <- c(1.4, 0, 3.4)
> rnorm(3, mean=1, sd=jjsd) # bad news
[1] 0.7728073 NA 0.5524101
Warning messages:

One or more nonpositive parameters in: rnorm(3, mean
= 1, sd = jjsd)

S Poetry c©1998 Patrick J. Burns v1.0

112 CHAPTER 4. VOCABULARY

> rnorm(3, mean=1) * jjsd # wrong
[1] 2.000239 0.000000 6.574893
> rnorm(3) * jjsd + 1 # right
[1] -0.02761199 1.00000000 3.91233952

DANGER. Discrete distributions can be tricky, rounding is often a good idea.

> jj2 <- c(2, 2 - .Machine$double.eps)
> jj2
[1] 2 2
> ppois(jj2, 1.5)
[1] 0.8088468 0.5578254
> ppois(round(jj2), 1.5)
[1] 0.8088468 0.8088468

The sample function is a random function of a different sort. In its simplest
use, it returns a permutation of its argument. (A single integer stands for the
integers up to it from 1.)

> names(jjwt)
[1] "dorothy" "harold" "munchkin" "stevie"
> sample(names(jjwt))
[1] "harold" "munchkin" "dorothy" "stevie"
> sample(10)
[1] 7 2 5 10 3 9 1 6 8 4

An important argument is replace which tells whether or not items are to be
replaced after they have been selected. (I remember that the default value of
replace is FALSE since a permutation results when replace is missing.)

> sample(names(jjwt), 10, rep=T)
[1] "harold" "stevie" "harold" "harold"
[5] "dorothy" "stevie" "dorothy" "munchkin"
[9] "munchkin" "munchkin"

There is also a probability argument that takes the relative probabilities for
each item in the population. This need not sum to 1, sample will normalize it.

> sample(names(jjwt), 10, rep=T, prob=1:4)

S Poetry c©1998 Patrick J. Burns v1.0

4.9. GRAPHICS 113

[1] "stevie" "stevie" "stevie" "dorothy"
[5] "munchkin" "stevie" "munchkin" "munchkin"
[9] "munchkin" "stevie"

4.9 Graphics

Here is another part of my cursory look at graphics in S.

The trellis package is a relatively recent addition to the graphical capabilities
in S. Primarily trellis is concerned with ways to plot data of several variables in
a comprehensible manner.

plot is the most conspicuous graphics function. It is generic and there are
numerous methods for it. The default method does what I expect you would
think, plus a little more.

Plots of three variables are done with persp, contour and the S-PLUS
function image. The trellis function wireframe is similar to persp.

General purpose graphics functions include barplot, dotchart, matplot,
symbols and pie. Pie charts are out of favor with statistical graphics experts—
they essentially require us to estimate angles, which humans are not very good
at doing. Use dot charts or bar plots instead.

Some functions of a more statistical nature are boxplot, hist, pairs, qqnorm,
qqplot, tsplot, and the S-PLUS function biplot.

Among the most useful low-level graphics functions are title, text, mtext,
legend, points, lines, abline, arrows, segments, polygon, axis, rug, box
and frame.

Two functions that are available on many graphics devices for interacting
with plots are identify and locator. identify writes something on the plot
about the nearest datapoint to the place that you specify. locator will give the
coordinates to locations that you select.

4.10 Statistics

Functions to do simple summary statistics are mean, median, var, cor, quantile.
The S-PLUS functions location.m, cov.mve, scale.tau and scale.a perform
robust estimation. S-PLUS also contains cov.wt for covariance estimation with
observation weights.

Functions in S-PLUS that perform hypothesis tests are t.test, wilcox.test,
cor.test, var.test, prop.test, chisq.test, fisher.test, kruskal.test,
mantelhaen.test, mcnemar.test, and friedman.test. Goodness of fit tests
are performed with chisq.gof and ks.gof. crosstabs is also an S-PLUS func-
tion.

S Poetry c©1998 Patrick J. Burns v1.0

114 CHAPTER 4. VOCABULARY

There are two ways to perform ordinary least squares regression—either via
lm which takes a formula, or with lsfit which is an older function. If you want
to use a function that is quick at performing regressions on data that is known
to be good (no missing values and so on), then lm.fit.qr would be a good
choice. A situation that I have in mind is if the function you are writing does
iterative regressions. If you want to fit a least squares model with the coefficients
constrained to be positive, then use the nnls.fit function of S-PLUS.

Robust regression may be done via l1fit which performs least absolute
deviation regression, or with rreg which does M-estimates of regression. High-
breakdown regression is done with the ltsreg (least trimmed squares regression)
S-PLUS function.

Analysis of variance (ANOVA) is accomplished with aov. (There is an
anova function—which does mean analysis of variance—but this is not the func-
tion you want to use to fit an ANOVA model.) Variance components can be
estimated with the S-PLUS function varcomp. The lme and nlme functions
(linear mixed effects and nonlinear mixed effects) provide related functionality
in recent versions of S-PLUS. S-PLUS also has functions for making quality
control charts.

Yet another area where S-PLUS has added a lot of functionality is in time
series. Univariate ARIMA models are fit with arima.mle and its friends. The
arima.fracdiff function fits (long-memory) fractionally differenced ARIMA
models. ar fits univariate and multivariate AR models, and spectrum performs
spectral analysis on univariate and multivariate series. In addition, multivariate
autocorrelation estimates (including cross-correlations) are available via acf
and univariate robust seasonal decompositions are created with stl (vanilla S
function).

Functions for multivariate analysis include cmdscale for classical multidi-
mensional scaling, and cancor for canonical correlation. Multivariate analysis
within S-PLUS also includes principal components with princomp, factor anal-
ysis with factanal and multivariate analysis of variance with manova.

Survival analysis functions are available in S-PLUS and from statlib.

The glm function fits generalized linear models. Notice that one of the
functions to fit regression was lm as in “linear model”. One description of re-
gression is that the expected value of the response is some linear combination
of the explanatory variables; furthermore, the errors from this are distributed
as a Gaussian, or at least continuously distributed and symmetric about zero.
Generalized linear models are generalized in two ways. First, that the expected
response is some specified function of a linear combination of the explanatory
variables; that function is called the link function. Second that the errors can
come from a variety of distributions, such as binomial, Poisson or gamma. Lo-
gistic regression fits within the scheme of generalized linear models.

S Poetry c©1998 Patrick J. Burns v1.0

4.10. STATISTICS 115

Smoothing is an important element of modern statistics. Explicit functions
for smoothing include smooth, loess.smooth, smooth.spline and the S-PLUS
functions ksmooth and supsmu.

Much of the rest of the statistical functionality that I’ll talk about are some
combination of the idea of generalized linear models and smoothing.

Directly along this line are generalized additive models which are fit with
gam. A generalized additive model is just like a generalized linear model
except that we find a linear combination of smooth functions of each explanatory
variable, rather than a linear combination of the variables themselves. Each
smooth function is a function of one variable only.

The ace and avas S-PLUS functions fit models that are similar to generalized
additive models, except that they do not have a link function, but they allow the
response to be transformed via a smooth as well as the explanatory variables.

The S-PLUS function ppreg fits projection pursuit regression models. These
take a linear combination of the explanatory variables first and then does a
smooth. Several of these terms may be added together to approximate the
response.

loess does local (robust) regressions so that the response is approximated
locally in each region of the space of the explanatory variables.

The nls function performs nonlinear least squares. This is different from
ordinary regression only because the parameters do not enter linearly in the
model. For example a linear equation would be

y = ax1 + bx2 + c (4.1)

where the parameters are a, b and c. Here is a nonlinear equation

z = eax1ebx2ec (4.2)

that can be transformed to a linear form by taking logarithms. The following
formula is inherently nonlinear:

y = axb + c (4.3)

Nonlinear regression with box constraints on the parameters may be done in
S-PLUS with nlregb.

Finally, we get far afield with tree which fits classification and regression
trees. A tree is a regression tree if the response takes on continuous values,
and it is a classification tree if the response is categorical. Trees are decidedly
non-smooth. The basic operation in growing a tree is splitting a node. The
object is to have the response within each of the two groups as alike as possible.
At first there is only one node—the whole dataset. You split that in two,
which means to find the best combination of the explanatory variable and the
location in the explanatory variable to break the data into two. Then split

S Poetry c©1998 Patrick J. Burns v1.0

116 CHAPTER 4. VOCABULARY

each of the two nodes you just created. Continue splitting nodes until you
don’t want to anymore. (The most common current practice is to create more
than enough nodes, and then to decide which splits to throw away—inefficient
computationally, but more efficient statistically.)

Trees have become popular because in some respects they are very easy.
When you have your tree and you want to know how to classify a new case, you
only need to consider one variable at a time: Number of feet greater than 3?
Yes. Weight less than 10 kg? No. Then must be a corgi.

4.11 Under-Documented

This section presents functions that don’t have help files, or didn’t have help
for some portion of their life, or for other reasons are less visible than I think
they should be.

zapsmall is a little-known and deviously clever little function. It changes
numbers that are very close to zero relative to the largest number (in absolute
value) in the vector. It was created to be used for statistics that are printed
out, but it can also be used for informal testing as in:

zapsmall(real.answer - fjj(input))

Here we think that the result of fjj(input) should be the same as real.answer
with perhaps some noise thrown in. If you see numbers that are on the order
of rounding error, then you know that there are no numbers much bigger than
that. On the other hand, you might see a bunch of zeros and a few non-zero
numbers.

S-PLUS contains a group of functions that do set operations on atomic
vectors. Their names are union, intersect, and setdiff.

Another secretive S-PLUS function is find.objects which is like find
except that it finds object names that contain a certain string rather than
matching the string exactly. The other difference is that find.objects only
takes a string—you may not pass the unquoted name to it. Using find.objects
is like using objects with the pattern argument except that find.objects
looks in all of the databases on the search list, not just one.

The slice.index S-PLUS function is a relatively recent addition. It is a
generalization of the row and col functions to higher dimensional arrays.

The merge.levels function allows you to combine levels in a factor. For
example, if you had a factor representing species, you could use merge.levels
to make a new factor representing genera or families.

S Poetry c©1998 Patrick J. Burns v1.0

4.12. DEPRECATED 117

If you are poor and use S-PLUS via modem without a windowing system,
then you will not have the help window system available to you. The topic
function searches for phrases within the titles of help files, so that you may be
able to find some functionality even if you don’t know the function name.

> topic("mark")
invisible Mark Function as Non-Printing
Question.mark On-line Information on Functions, Objects, ...
util Earnings and Market/Book Ratio for Utilities
util.earn Earnings and Market/Book Ratio for Utilities
util.mktbook Earnings and Market/Book Ratio for Utilities

An S-PLUS function that can come in handy for messing with character data
is AsciiToInt. This doesn’t seem to be intended for public use, but it probably
won’t go away soon. For each character in a character vector, AsciiToInt
returns the corresponding ASCII code. The result that AsciiToInt returns is
one numeric vector.

> match(AsciiToInt("/tmp/myomy/Sfun.45"),
+ AsciiToInt("/"), nomatch=0)
[1] 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

4.12 Deprecated

The category function and its relatives do the same thing that factor, ordered
and their relatives do. category was written before object-orientation came
along. It holds no benefit and some deficits relative to the object-oriented ver-
sions, though factors are no angels as can be seen starting from page 130. And
your exasperating pit-pat 18

sort.list does the same thing as, but a little less than order, and the
name can be a source of confusion. Use order instead.

4.13 Things to Do

Create a vectorized function that divides each string in a vector into its indi-
vidual characters.

The S-PLUS functions union and intersect use atomic vectors to represent
sets. Set theory implies that lists are the proper objects for sets. Create a suite of
functions that perform set operations on lists. Include a symmetric difference.
Can you make them reasonably efficient? Is object-orientation useful? Is a
complement function feasible?

S Poetry c©1998 Patrick J. Burns v1.0

118 CHAPTER 4. VOCABULARY

Make zapsmall work for complex numbers. What do you want it to do?

Figure out why the following happens:

> jjm
[,1] [,2] [,3]

[1,] 1 6 11
[2,] 2 7 12
[3,] 3 8 13
[4,] 4 9 14
[5,] 5 10 15
> apply(jjm, 1, "+")

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15

Learn the format that data.dump produces. Hack at it until you understand it.

Create a function that will read in double-precision numbers that are written
in scientific notation with a “d” instead of an “e”.

Make it so that the statement

paste("data", i, sep="") <- 1:i # THIS WON’T WORK

will work. Is this a good thing to do?

Learn what each function in your version of S does.

4.14 Further Reading

For more on statistical functionality in S and S-PLUS, see Venables and Ripley
(1997) Modern Applied Statistics with S-Plus, which comes with high praise.
Spector (1994) An Introduction to S and S-Plus also surveys the statistical
capabilities of S-PLUS. Chambers and Hastie (1992) Statistical Models in S
describes the modeling functions that were produced at Bell Labs.

Books that describe some of the more esoteric statistical methods include
McCullagh and Nelder (1989) Generalized Linear Models; Hastie and Tibshi-
rani (1990) Generalized Additive Models; Bates and Watts (1988) Nonlinear
Regression Analysis and Its Applications; Seber and Wild (1989) Nonlinear
Regression; Breiman, Friedman, Olshen and Stone (1984) Classification and
Regression Trees; Ripley (1996) Pattern Recognition and Neural Networks; Be-
ran (1994) Statistics for Long-Memory Processes.

Many of the graphical ideas embodied in the trellis package are discussed in
Cleveland (1993) Visualizing Data.

S Poetry c©1998 Patrick J. Burns v1.0

4.15. QUOTATIONS 119

Reading help files and snooping through directories for undocumented ob-
jects are the best ways to increase your vocabulary. Of course for the undoc-
umented (and under-documented) functions, you will need to use the ultimate
documentation—the code itself.

Further functionality may be found in the S section of statlib. I’ll not survey
its contents because some uncooperative person would go and add something
good after I made the list. Additions to the section are often announced on
S-news.

4.15 Quotations

13Robinson Jeffers “Shine, Perishing Republic”
14Ezra Pound “In a Station of the Metro”
15Emily Dickinson 258 (There’s a certain Slant of light)
16D. H. Lawrence “The Ship of Death”
17William Blake “Piping Down the Valleys Wild”
18Stevie Smith “No Categories!”

S Poetry c©1998 Patrick J. Burns v1.0

120

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 5

Choppy Water

In which we learn to forecast the seas.

This covers only programming—problems with statistics and with graphics
are not given.

5.1 Identity Crisis

Benjamin Wharf, a linguist, had the theory that our view of the world is shaped
by the words of our language. He presented the example that lots of fires are
started by “empty” gasoline cans. (He worked for an insurance company.) An
“empty” gasoline container is actually full of vapors, which is the explosive part.

DANGER. Two of the most confusing functions are is.vector and as.vector.
The common notion of “vector” is an atomic vector. However, these functions
think of a vector as an object without attributes. A better name would have
been is.simple.

DANGER. But wait, you also get inconsistency about names:

> jjvec <- jjvecn <- 1:26
> names(jjvecn) <- letters
> is.vector(jjvec)
[1] T
> is.vector(jjvecn)
[1] F
> jjlist <- jjlistn <- as.list(1:26)
> names(jjlistn) <- letters

121

122 CHAPTER 5. CHOPPY WATER

> is.vector(jjlist)
[1] T
> is.vector(jjlistn)
[1] T

So to paraphrase, it is easier for a list to be a vector than for a vector to be
a vector. You’ll be glad to hear that as.vector and is.vector always agree
with each other. Whenever you are tempted to use one of these functions, you
should definitely ponder if this is the right thing.

DANGER. Related to this are functions like as.double and as.character.
These, like as.vector, strip attributes off of the object as well as coercing the

contents. To preserve the attributes, you want to assign to the mode or storage
mode:

storage.mode(xmat) <- "double" # saves attributes

DANGER. However, you should note that an object may have attributes and
still pass the is.double test. It is generally the case that as.xxx(x) is not
guaranteed to be the same as x when is.xxx(x) is TRUE.

DANGER. is.matrix can also be a source of confusion. The definition of
is.matrix is an object with a dim of length 2. Data frames fit this definition.
The following nonsense

if(is.matrix(x)) x <- as.matrix(x)

actually is a useful idiom—it coerces a data frame to a matrix. is.array has
similar behavior.

DANGER. I’ve said it elsewhere, but it is worth saying again that using
drop=F when subscripting matrices and arrays in function definitions often pre-
vents bugs.

DANGER.

S Poetry c©1998 Patrick J. Burns v1.0

5.1. IDENTITY CRISIS 123

> jjm6 <- matrix(1:6,3)
> jjm4 <- 10 + matrix(1:4,2)
> jjm6

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> jjm4

[,1] [,2]
[1,] 11 13
[2,] 12 14
> jjm6[c(T,F,T),] <- jjm4[1,]

Here is our plan with the command above: that each of the rows marked TRUE
in jjm6 will end up being the same as the first row of jjm4. It’s disappointment
time, because S has a different plan.

> jjm6
[,1] [,2]

[1,] 11 11
[2,] 2 5
[3,] 13 13

S thinks of this as a certain number of positions being filled in jjm6 (arranged
in the usual column-major order), and replicates the values on the right-hand
side of the assignment to be the right length.

DANGER. You can use the c function to combine lists as well as atomic
vectors. If one of the arguments is a list, then it is as if all of the other arguments
are coerced to be lists with as.list.

> c(list("fjd",3:4), b=5:7)
[[1]]:
[1] "fjd"

[[2]]:
[1] 3 4

$b1:
[1] 5

$b2:
[1] 6

S Poetry c©1998 Patrick J. Burns v1.0

124 CHAPTER 5. CHOPPY WATER

$b3:
[1] 7

> c(list("fjd",3:4), b=list(5:7))
[[1]]:
[1] "fjd"

[[2]]:
[1] 3 4

$b:
[1] 5 6 7

In most cases, it is the second of these that will be the proper formulation. If
the vector is only of length one, then it doesn’t matter which is used.

DANGER. There are times when S creates 1-dimensional arrays—arrays
where the dim has length 1. One way to get such a critter is to use t to trans-
pose an object that is not an array. It is rare that these appear, and even rarer
that they are useful. The only problem with them is our tendency to think that
they should be exactly the same as their non-array counterparts. They almost
are.

DANGER. tempfile is another Wharfian word—it should be called tempfile-
name to show that it merely returns the name of a temporary file, rather than
creating the file.

DANGER. When going from a floating point number to an integer, truncating
is much faster than rounding. In the slow, old days that was an important
consideration, and S still retains that feature. Whether the coercion is through
is.integer, changing the storage mode to integer, or an internal coercion,
numbers are essentially truncated. There is a little leeway—numbers that are
very close to an integer are rounded up to the integer. S does an amazingly
good job of it, but sometimes fails. The following example may be machine-
dependent.

> (2 - .1)/.1
[1] 19
> as.integer(.Last.value)
[1] 18

S Poetry c©1998 Patrick J. Burns v1.0

5.1. IDENTITY CRISIS 125

Whenever you do computations to get numbers that are going to be coerced to
integer, it is good practice to round them directly.

DANGER. S hides the fact that numbers can be represented as double preci-
sion floating point, integer, and so on. Most of the numbers that S creates are
double precision. On very rare occasions a number stored as an integer will act
differently than if it had been stored as a double. The most common way to get
integers is with the : operator.

> storage.mode(1:10)
[1] "integer"

DANGER. Keep in mind that is.integer is a test of the storage mode, not
of the values in the object. The vector c(0, 4, 6) contains values that are
logically integer, but the storage mode is double.

DANGER. A complex vector does not test TRUE in is.numeric.

DANGER. An object need not be “null” just because it has length zero.

> is.null(numeric(0))
[1] F

Often where is.null appears, it is better to test if the length of the object is
zero.

DANGER. When you are changing an option, then you have to get the name
of the option precisely right. For instance if you want to turn warning messages
into errors, and you type

options(warning=2) # WRONG

then you won’t get what you want because the name of the option is warn, you
need to say

S Poetry c©1998 Patrick J. Burns v1.0

126 CHAPTER 5. CHOPPY WATER

options(warn=2)

The soptions function, given on page 45, guards against this problem.

DANGER. The all.equal function does not return a logical value when the
objects are not equivalent. So code like:

if(!all.equal(x, y)) ...

is not going to work properly.

DANGER. This is quite picky, but if you are in a picky mood . . .

> all.equal(as.numeric(NA), 0/0)
[1] T
> is.nan(as.numeric(NA))
[1] F
> is.nan(0/0)
[1] T

NaN’s and NA’s are not distinguished by all.equal.

DANGER. The “not” operator can not be the first character in a command
because it will be interpreted as an escape to the operating system.

> !is.na(longley.y)
Badly placed ()’s
> (!is.na(longley.y))
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

T T T T T T T T T T
1957 1958 1959 1960 1961 1962

T T T T T T

The “Badly placed” message is a syntax error from Unix.

DANGER. The lag function does not change the actualy data, it only changes
the time points that the observations represent. Furthermore, in a sense it is
“lead” rather than “lag”.

S Poetry c©1998 Patrick J. Burns v1.0

5.2. OFF THE WALL 127

5.2 Off the Wall

DANGER. As far as I know there is only one spot in S where a space makes
a difference. If you type x<-2 and expect a logical vector containing the values
of x that are less than -2, you will be saddened to learn that you don’t get your
logical vector, and you have just destroyed x by assigning it the value 2.

DANGER. S has a number of reserved words that you may not use as the
name of an object. Probably the most common reserved words that you might
want to use are F, T, return, break, next. You can see an example of this
problem on page 87.

DANGER. A natural thing to try when testing for missing values is:

> longley.y == NA
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

NA NA NA NA NA NA NA NA NA NA
1957 1958 1959 1960 1961 1962

NA NA NA NA NA NA

I’ve tried this myself a few times years after I knew better. The problem is that
the NA is replicated to the length of x and then the answer is that number of
missing values. The proper way to get this done is to use is.na:

> is.na(longley.y)
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

F F F F F F F F F F
1957 1958 1959 1960 1961 1962

F F F F F F

DANGER. Do not modify the looping variable in a for loop. You will confuse
at least yourself and possibly S also.

S Poetry c©1998 Patrick J. Burns v1.0

128 CHAPTER 5. CHOPPY WATER

DANGER. At least for version 3, you want corresponding arguments in the
generic function and its methods to have the same name. Suppose that the
first argument to the generic function is x and the corresponding argument in
one of the methods is object. When we call the generic function, the argument
is evaluated and called x. The class says to use our method, so that function
becomes the operable one. The method needs object so it evaluates the first
argument, again. In the best circumstances this is merely inefficient. At times,
though, the double evaluation can be a bug—for instance, if randomness is
involved.

Let’s make it even worse. If the method has object as the argument corre-
sponding to x in the generic function, and the method also has x as an additional
argument, real trouble develops. Now when we get to the method, it re-evaluates
the first argument to get object, but it doesn’t evaluate x because it already
knows what x is (though it is the wrong x as far as the method is concerned).
And what a congress of stinks! 19

DANGER. To create a vector of doubles that is 10 long, you say double(10)
and you say integer(10) to create a vector of 10 integers. But list(10)

does not create a list that is 10 long—it creates a list that has one component
(that is the number 10). To initialize a list with length 10, you need to use the
circuitous statement:

vector("list", 10)

This is another reminder that the word “vector” has more than one meaning in
S.

DANGER. A common code fragment goes like

for(i in 1:length(x)) ...

This is fine, except when the length of x is zero, in which case i is first 1 and
then 0. Seldom what you want. If there is a chance that the length of x will be
zero, then use the following instead:

for(i in seq(along = x)) ...

DANGER. While we are on the subject, another popular way to mess this
up is to say:

S Poetry c©1998 Patrick J. Burns v1.0

5.2. OFF THE WALL 129

for(i in length(x)) ...

This only does the last of the intended iterations.

DANGER. If you dump (using dump) an object that contains a call component
or attribute, then the restoration is not going to work. The call component

will be evaluated instead of remaining merely an image of what to evaluate.
This is another reason to use data.dump when making ASCII representations
of objects that are not functions.

DANGER. In version 3 of S-PLUS a common idiom to arrange for object
code to be loaded automatically is something like:

if(!is.loaded(symbol.C("myfun_Sp")))
dyn.load("myfun.o")

If you do this, make sure that you get the symbol right for is.loaded. In
particular, you want to spell the routine name correctly and you do not want
to forget the symbol.C or symbol.For. If you get it wrong, then the loading
will occur each time that the function is called instead of once per session. This
isn’t so bad if it is only called a few times in a session. But when it is called
hundreds of times, then pieces of memory get eaten by the loaded code, your
memory gets fragmented, and you can start paging or run out of memory all
together.

DANGER. Consider the following function.

"switch.chartest"<-
function(this.op)
{

ans <- switch(this.op,
a = {

cat("doing a\n")
1

}
,
b = {

cat("doing b\n")
2

}

S Poetry c©1998 Patrick J. Burns v1.0

130 CHAPTER 5. CHOPPY WATER

,
{

cat("doing other\n")
3

}
)

ans
}
> switch.chartest

Now give this a few values:

> switch.chartest("a")
doing a
[1] 1
> switch.chartest("b")
doing b
[1] 2
> switch.chartest(" ")
doing other
[1] 3
> switch.chartest("")

It is fine except when we give it an empty string. When switch dispatches on
an empty string, then it does nothing instead of doing the default code.

> jj <- switch.chartest("")
> jj
> mode(jj)
[1] "missing"

And the nothing that it does is a little bizarre. This is a bug, and it exists at
least in S-PLUS version 3.4 and earlier.

5.3 Factors

There are a number of sticky bits with objects of class factor. Unfortunately,
this section is not likely to cover all of the problems. Examples will use the
object jjfac.

> jjtypen
Harold Dorothy Munchkin Stevie
"corgi" "corgi" "cat" "cat"
> jjfac <- factor(jjtypen)

S Poetry c©1998 Patrick J. Burns v1.0

5.3. FACTORS 131

DANGER. The first thing that is strange is that the names are not printed
even though they are there.

> jjfac
[1] corgi corgi cat cat
> unclass(jjfac)
Harold Dorothy Munchkin Stevie

2 2 1 1
attr(, "levels"):
[1] "cat" "corgi"
> names(jjfac)
[1] "Harold" "Dorothy" "Munchkin" "Stevie"

This is a design decision that is sensible once you consider the alternatives. Fac-
tors are printed as strings with no quotes around them, so are names. So if the
names were printed, it would be rather ambiguous at times which corresponded
to names and which to the data. If factors used quotes, then they would be
hard to distinguish from character data.

DANGER. Here is reasonable behavior from a version of S-PLUS:

> factor(factor(jjtypen, exclude="cat"))
Harold Dorothy Munchkin Stevie
corgi corgi NA NA
> version
Version 3.1 Release 1 for Sun SPARC, SunOS 4.x : 1992

Though note that the names are printed here, unlike in other cases. Now with
a later version:

> factor(factor(jjtypen, exclude="cat"))
Harold Dorothy Munchkin Stevie
NA NA NA NA
Levels:
[1] "1"
> version
Version 3.4 Release 1 for Silicon Graphics Iris, IRIX 5.3 : 1996

Obviiously, someone fixed something. (This is stolen from a message to S-News
by John Maindonald.)

DANGER.

S Poetry c©1998 Patrick J. Burns v1.0

132 CHAPTER 5. CHOPPY WATER

> labels(jjfac)
[1] "Harold" "Dorothy" "Munchkin" "Stevie"

There is a labels argument to factor, but this is not the same as the result
of the labels function on the factor. The labels argument tells how to make
the levels attribute of the factor. The labels function is generic and is meant
to give a name to each datum in the object, in this case it is the same as the
names.

DANGER. Coercion from factor is not necessarily smooth and enlightened.
(Z. Todd Taylor pointed this out to S-news.)

> paste(names(jjfac), "is a", jjfac)
[1] "Harold is a 2" "Dorothy is a 2"
[3] "Munchkin is a 1" "Stevie is a 1"

Though this answer may arguably be true, it is not what some of us would have
in mind. We need to explicitly coerce to character.

> as.character(jjfac)
[1] "corgi" "corgi" "cat" "cat"
> paste(names(jjfac), "is a", as.character(jjfac))
[1] "Harold is a corgi" "Dorothy is a corgi"
[3] "Munchkin is a cat" "Stevie is a cat"

Those involved are happier with this.

DANGER. There is not a factor method for c (at the time of writing at
least).

> jjpet <- c(Sybil="cat", Shera="cat", Fred="chinchilla")
> jjpetfac <- factor(jjpet)
> jjpetfac
[1] cat cat chinchilla
> c(jjfac, jjpetfac)
Harold Dorothy Munchkin Stevie Sybil Shera Fred

2 2 1 1 1 1 2
> unclass(.Last.value)
Harold Dorothy Munchkin Stevie Sybil Shera Fred

2 2 1 1 1 1 2

We really want to take this more scenic route.

S Poetry c©1998 Patrick J. Burns v1.0

5.3. FACTORS 133

> factor(c(as.character(jjfac), as.character(jjpetfac)))
[1] corgi corgi cat cat
[5] cat cat chinchilla

DANGER. Be careful when you use the codes function. The levels may be
permuted because codes sorts them.

> jjfac2 <- factor(jjtypen, levels=c("corgi", "cat"))
> unclass(jjfac2)
Harold Dorothy Munchkin Stevie

1 1 2 2
attr(, "levels"):
[1] "corgi" "cat"
> codes(jjfac2)
[1] 2 2 1 1

Here codes gives a different code than what is actually in the object since the
levels are not in alphabetic order.

DANGER. You want to pay a little attention when you are creating ordered
factors.

> jjo
[1] 90 90 100 90 110 100 110
> ordered(jjo)
[1] 90 90 100 90 110 100 110

90 < 100 < 110

jjo is a numeric vector. We make an ordered factor with it, and everything is
fine. However, the same character vector doesn’t give the same answer.

> ordered(as.character(jjo))
[1] 90 90 100 90 110 100 110

100 < 110 < 90

Now we get 90 being greater than 110. The sorting is being done in dictionary
order rather than numeric order.

S Poetry c©1998 Patrick J. Burns v1.0

134

DANGER. There is a special idiom for coercing an ordered factor that rep-
resents numbers into those numbers.

> jjof <- ordered(jjo)
> jjof
[1] 90 90 100 90 110 100 110

90 < 100 < 110
> as.numeric(jjof)
[1] 1 1 2 1 3 2 3
> as.numeric(as.character(jjof))
[1] 90 90 100 90 110 100 110

Just using as.numeric is tempting, but not right. All sorts of trouble might
ensue if it were changed so that it did work since the object underlying factors
is a numeric vector.

DANGER. A reason that many of the problems with factors come up so often
is that data frames are excessively fond of factors—they favor factors over char-
acter data. When a data frame is created, often a character vector is coerced
to be a factor.

5.4 Things to Do

Create a new class of objects for categorical data that has none of the problems
that factors do.

Look through your functions for these trouble spots.

5.5 Further Reading

The S-news list.

5.6 Quotations

19Theodore Roethke “Root Cellar”

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 6

Debugging

In which we learn to bail the boat.

When S reads a line of your input (that is, parses it), there are three possible
results:

• There is a syntax error.

• The command is incomplete.

• The command is complete.

Once a comand is complete, S will go on to evaluate the command.
If you get a syntax error, there is really no alternative to puzzling over the

line in question with the hint that S gives you. When a crop is so thin 20

When you write code in an editor, then you can save yourself a few occur-
rences of errors due to missing braces by typing the braces before filling them
in. So at one point you have:

if(length(x)) {
} else {
}

then you go back and fill in the empty braced expressions. You might think
that this is slow because you have to back up and fill in, but you save a lot of
time by not having as many syntax errors, and by not needing to count braces
as you type. It can also save you from getting the logic wrong.

6.1 Masking

Consider the two commands:

135

136 CHAPTER 6. DEBUGGING

> c <- matrix(1:9, 3)
> t(c)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
Warning messages:

Looking for object "c" of mode "function", ignored
one of mode "integer" in: print.structure(x, a,
quote = quote, prefix = prefix)

Everything seems fine at the first command, but on the second we get a myste-
rious warning message. It can seem particularly mysterious when such warnings
start appearing a long time after the assignment is made.

Here is what is going on. There is an in-built function named c that is used
in the process of printing the transposed matrix, but we have created another
object named c that S sees first. Since the c that we created is not a function,
it continues searching until it finds a function named c, and uses that. S is
just being friendly when it issues the warning. We can avoid such warnings by
renaming our object. In addition to c, other likely names that are good to avoid
are t, C and s. (The names T and F are prohibited.)

In contrast, consider the following command:

DO NOT DO THIS
> c <- function(...) cat(list(...)[[1]])
Warning messages:

assigning "c" masks an object of the same name on
database 5

The result of this is a different warning message.

Now the c that we just created will be used instead of the in-built c function
(and trouble will ensue). Unless you really mean to replace the in-built function,
rename your function immediately.

The S-PLUS function masked can be used to see what objects in the current
directory have the same names as objects in the rest of the databases on the
search list.

> masked()
[1] ".Random.seed" "c"

We see our c function that is masking the real one (it would also appear if it
weren’t a function). .Random.seed is also masked—this is fine, it merely means
that we have used a random function with this working database. A danger of
masking functions becomes clear when we try to get rid of our version of the c
function.

S Poetry c©1998 Patrick J. Burns v1.0

6.2. DUMPING 137

> rm(c)
Error in remove(list): need names of objects to remove,

not the objects themselves
Dumped
> remove("c")
> masked()
[1] ".Random.seed"

When the bizarre occurs, consider masking as a likely source of the problem.

6.2 Dumping

So what can go wrong? You can get a syntax error, you can get “object not
found” errors, and other sorts of errors. Almost all errors except syntax errors
and system terminating result in the error action. When a dumpable error
happens, then S performs the action given by the error option. In version 3
there are basically three choices for this option. It can be NULL, which is seldom
useful; it can be dump.calls, the default; or dump.frames.

Each of dump.calls and dump.frames creates an object named last.dump
in the working database. When dump.calls is used, then last.dump contains
the string of function calls that was in effect at the time of the error. When
dump.frames is used, then last.dump contains not only the function calls, but
also all of the objects in the frame for each function call.

Both traceback and debugger use last.dump (by default). traceback is
essentially just a printing method to show the function calls. Although very
simple, this is often enough information to pinpoint the problem. I think of
traceback as the first thing to do after an error dump.

If traceback is not enough to comprehend the error, then debugger can be
used. This allows you to look at objects within specific frames as they were at
the time of the error. The debugger function has the same sort of interface as
browser. In order to use debugger except as a synonym for traceback, you
need to set the error option to dump.frames like:

options(error=dump.frames)

or

options(error=expression(dump.frames()))

If this was not done prior to the time of the error, then you will need to recreate
the error in order to look at objects with debugger.

There are times when you get a warning that you know is an indication of
trouble, but you don’t understand why it is happening. This is when you should
turn a warning into an error. Do this with the command:

S Poetry c©1998 Patrick J. Burns v1.0

138 CHAPTER 6. DEBUGGING

options(warn=2)

You can then recreate the warning, which will now be an error, and use the
same tools as with any other error.

6.3 Exploring

When you don’t have an error condition, but either something is wrong or you
are not sure that everything is right, then you need some means of exploring
the computations.

A very good function for this is browser. This function allows you to look
at the objects in the frame of a function as they exist at the time of the call
to browser. You can use traceback when you are at a browser prompt to see
who called whom. This is a boy that pats the floor to see if the world is there,
is flat 21

I have considered making a version of fix that automatically puts a call to
browser in the definition of a new function. I use browser a lot to test functions
as I write them. Write part of the function, make sure that the result so far is
as expected; write some more, check that. I find this more productive (and fun)
than trying to decipher errors from a function that I don’t check as I go.

(It is reputed that Charlie Chaplin didn’t care if he won a volley of tennis—
the important bit was looking graceful while he played. I suspect he was a
formidable tennis opponent.) It’s not important that every line you write works
right off, what is important is that you not assume code works unless you have
evidence.

DANGER. The browser.default function has a test in it to see if S is being
used interactively. If not, then an error occurs. Thus, a BATCH job can be
ruined if you leave a call to browser in one of the functions it uses. The top of
browser.default can be changed to something like the following:

if(!interactive()) {
warning("for interactive use")
return(NULL)

}

This makes it so that browser is ignored when it is called in a non-interactive
setting except that a warning is issued. This seems a punishment more fitting
of the crime. they’re taking him to prison for the colour of his hair 22

When you are in browser, you can assign objects to the working database
with the <<- operator so that you can use those objects for testing. It is often
natural at this point to interrupt (hit control-backslash) the browsing instead

S Poetry c©1998 Patrick J. Burns v1.0

6.3. EXPLORING 139

of going through the whole computation. If you do, then your variables won’t
be there. The problem is that the assignments are not committed. You can
interrupt the browsing, but you need to synchronize the database before you
do. See talk of synchronize on page 103.

Another exploration technique is the old standby of putting print and
cat statements in function definitions. This works in any language, so it is
quite popular. An advantage over browser is that the computations are not
interrupted, so you can see a lot of information with minimal effort.

The trace function allows you to get information each time a traced function
is called. An example of a good use for trace is that you can trace all of the
methods of a generic function, so that you can be sure that the functions being
called are the ones that you expect.

DANGER. trace creates modified versions of the functions being traced.
You want to be careful when editing functions that you do not edit a traced
version because you will end up with a bunch of garbage in the definition that
you will need to get rid of later.

Version 3.2 of S-PLUS introduced the inspect function. This is reminiscent
of debuggers (like dbx) for C and Fortran code. You give inspect a command
to evaluate, like:

inspect(myfun(myarg1, myarg2))

You can then step through the calculations and look at objects as you go.
inspect, like trace, creates modified versions of functions that are being in-
spected, but unlike trace the functions that inspect creates disappear right
away so there is no chance of inadvertently getting the modified version.

You generally need to use the techniques of this section to discover where a
“system terminating” happens. System termination occurs when S detects an
inconsistency, and it kills itself rather than risking the possibility of corrupt-
ing something permanently. A system termination means that there is a bug
somewhere.

Almost always a system termination is the result of a problem with a call
to .C or .Fortran that has been added locally. Usually (but not necessarily)
the termination occurs during the call to C or Fortran. Once you believe that
you know the call that is causing the problem, there are a few things to check.
This is discussed on page 179.

S Poetry c©1998 Patrick J. Burns v1.0

140 CHAPTER 6. DEBUGGING

6.4 Examples

The best way to learn to debug is to see it done. Here are some examples of
actual debugging in S. As you might expect, they have been streamlined to
avoid some of the dead ends.

the dimnames bug

The presentation of this example definitely starts toward the end of the process.
I got a “system terminating” while using a fairly involved function; it took
several iterations to pare away pieces of the function in order to narrow down
the location of the problem. The obvious first step was to look for local functions
that contained .C or .Fortran, but there were none.

Here is a simple example where everything works.

> jjmat <- matrix(1:6, 2)
> dimnames(jjmat) <- list(1:2, c("a","b","c"))
> jjmat

a b c
1 1 3 5
2 2 4 6
> rbind(jjmat, jjmat)

a b c
1 1 3 5
2 2 4 6
1 1 3 5
2 2 4 6

Now we do something that should change nothing at all.

> dimnames(jjmat)[[1]] <- 1:2
> jjmat

a b c
1 1 3 5
2 2 4 6
> rbind(jjmat, jjmat)
System terminating: bad address

But in fact the behavior is significantly different as you can see. The sharp-eyed
will recognize what the problem is in the output of the next command.

> dimnames(jjmat)
[[1]]:
[1] 1 2

[[2]]:
[1] "a" "b" "c"

S Poetry c©1998 Patrick J. Burns v1.0

6.4. EXAMPLES 141

A broader hint is provided by this command:

> mode(dimnames(jjmat)[[1]])
[1] "numeric"

The bug is that when a component of the dimnames of an array is assigned
a numeric vector, the coercion to character does not take place. The bug is
insidious since not all operations are affected by it.

This example shows off none of the debugging tools in S. There aren’t any
that are especially useful. You can try using trace or inserting cat statements
to identify just where the “system terminating” occurs, but you are on your
own after that.

the print.matrix bug

Here we have a matrix, and when we try to print it out with only a few digits,
we see that the digits argument is not respected.

> jjpbx <- as.matrix(data.frame(a=1:3, b=rnorm(3)))
> jjpbx

a b
1 1 -0.7710749
2 2 1.3230554
3 3 -1.0032299
> print(jjpbx, digits=2)

a b
1 1 -0.7710749
2 2 1.3230554
3 3 -1.0032299

There is no error, and not even a warning to force into an error. So we need
some other means to ferret out where the problem lies. One idea is to trace all
of the functions that contain the word “print” in their name.

> trace(find.objects("print"))
> print(jjpbx, digits=2)
On entry: print.matrix(jjpbx, digits = 2)

a b
1 1 -0.7710749
2 2 1.3230554
3 3 -1.0032299
Warning messages:

Looking for object "print" of mode "function",
ignored one of mode "{"

(The warning message is indicating that there is a bug in trace that will give
us another opportunity to practice debugging.) What we’ve learned is that the

S Poetry c©1998 Patrick J. Burns v1.0

142 CHAPTER 6. DEBUGGING

print.matrix function is used, and it is the only function used that is currently
being traced.

Below we see that the object has class "matrix", and that the bug disap-
pears when we unclass the matrix. This is the key step in the debugging, but
was arrived at by lucky accident more than by the inevitable discovery of our
debugging strategy.

> class(jjpbx)
[1] "matrix"
Warning messages:

Looking for object "print" of mode "function",
ignored one of mode "{"

> print(unclass(jjpbx), digits=2)
a b

1 1 -0.77
2 2 1.32
3 3 -1.00
Warning messages:

Looking for object "print" of mode "function",
ignored one of mode "{"

> untrace()

This is substantial progress—the bug has been isolated to the print.matrix
function. The task is now to understand what is happening inside print.matrix.
Below is the fragment of print.matrix that seems to be pertinent.

if(length(clab)) {
nd <- switch(mode(x),

numeric = if(missing(digits))
.Options$digits
else digits,

character = max(nchar(x)) + 2,
complex = 2 * (if(missing(

digits)) .Options$
digits else digits),

2)
if(abbreviate.labels && max(nchar(clab

)) > nd + 3)
clab <- abbreviate(clab, c(nd,

nd + 3))
}
prmatrix(x, rowlab = dn[[1]], collab = clab,

quote = quote, right = right)

We place a call to browser just before the call to prmatrix, and then try
printing to see what happens.

S Poetry c©1998 Patrick J. Burns v1.0

6.4. EXAMPLES 143

> print(jjpbx, digits=2)
Called from: print.matrix(jjpbx, digits = 2 . . .
b(2)> digits
[1] 2
b(2)> traceback()
5: eval(i, eval.frame, parent) from 4
4: browser.default(nframe, message = paste("Called from:", from 3
3: browser() from 2
2: print.matrix(jjpbx, digits = 2) from 1
1: from 1
b(2)> 0

a b
1 1 -0.7710749
2 2 1.3230554
3 3 -1.0032299

The digits object is as we expect, but still the function doesn’t work. Now we
try the same thing using print.default.

> print.default(jjpbx, digits=2)
Called from: print.matrix(x, quote = quote)
b(4)> digits
NULL
b(4)> traceback()
7: eval(i, eval.frame, parent) from 6
6: browser.default(nframe, message = paste("Called from:", from 5
5: browser() from 4
4: print.matrix(x, quote = quote) from 3
3: print.structure(x, a, quote = quote, prefix = prefix) from 2
2: print.default(jjpbx, digits = 2) from 1
1: from 1
b(4)> 0

a b
1 1 -0.77
2 2 1.32
3 3 -1.00
attr(, "class"):
[1] "matrix"

This time digits is NULL, which seems wrong, but the function works.
A little thought and investigation shows that the problem is that digits

needs to be fed to options, which is not happening when the computations
go directly to print.matrix. We solve the bug by adding the following if
statement to the top of print.matrix.

if(!is.null(digits)) {

S Poetry c©1998 Patrick J. Burns v1.0

144 CHAPTER 6. DEBUGGING

if((length(digits) != 1 || digits < 1) ||
digits > 20)
warning("Bad value for digits")

else {
on.exit(options(d))
d <- options(digits = digits)

}
}

Now we get what we want, and we check that the digits option really is put
back to the default value.

> print(jjpbx, digits=2)
a b

1 1 -0.77
2 2 1.32
3 3 -1.00
> options("digits")
$digits:
[1] 7

the trace bug

Here we investigate the problem of tracing print that we spotted in the last
example. My first hypothesis was that there’s a problem tracing functions whose
body is not wrapped in braces. Tracing a function like that worked fine so let’s
try tracing the print function, but by a different name.

> fjj <- print
> trace("fjj")
> fjj(fjj)
function(x, ...)
{

if(.Traceon) {
.Internal(assign(".Traceon", F, where = 0),

"S_put")
cat("On entry: ")
std.trace()
.Internal(assign(".Traceon", T, where = 0),

"S_put")
}
UseMethod("print")

}

This works fine, but tracing the print function does not.

S Poetry c©1998 Patrick J. Burns v1.0

6.4. EXAMPLES 145

> trace("print")
> print
{

if(.Traceon) {
.Internal(assign(".Traceon", F, where = 0),

"S_put")
cat("On entry: ")
std.trace()
.Internal(assign(".Traceon", T, where = 0),

"S_put")
}

}
Warning messages:

Looking for object "print" of mode "function",
ignored one of mode "{"

> untrace()

Now it is obviously the case that the name “print” is the culprit. The trace
function has an argument named print, which appears to be the only possible
source of confusion.

A solution is to add a dot to the end of the print argument in trace so that
it becomes the print. argument. This has no effect on the use of the function.

> trace("print")
> print
On entry: print(print)
function(x, ...)
{

if(.Traceon) {
.Internal(assign(".Traceon", F, where = 0),

"S_put")
cat("On entry: ")
std.trace()
.Internal(assign(".Traceon", T, where = 0),

"S_put")
}
UseMethod("print")

}
> untrace()

It is now possible to trace print without the extraneous warning.
So we are in the highly unlikely situation of confidently producing a fix for

the problem while having only a superficial understanding of how the problem
arises. But our curiosity gets the better of us and we continue the investigation
in order to understand how the print argument confuses the production of a
print function.

S Poetry c©1998 Patrick J. Burns v1.0

146 CHAPTER 6. DEBUGGING

We use inspect to examine the computation (using the original definition
of trace).

> inspect(trace("print"))
entering function trace
stopped in trace (frame 3), at:

exprs <- expression({
NULL
NULL

...
d> step

Here I omit a number of step commands in order to get to the interesting part.

d> eval name
[1] "print"
d> eval print
[1] T
d> eval what
[1] "print"
d> step
stopped in trace (frame 3), at:

fun <- get(name, mode = "function")
d> step
stopped in trace (frame 3), at:

get(name, mode = "function")
d> step
stopped in trace (frame 3), at:

n <- length(fun)
d> eval fun
[1] T

Here is the trouble. The fun object is getting the print argument rather than
the print function even though we are trying to restrict the get to functions.
We continue to explore.

d> eval mode((print)
Syntax error: end.of.file ("\n") used illegally at this point:
mode((print)

Calls at time of error:

7: error = function() from 6
6: parse(text = s) from 5
5: eval.it(str.args[1], local = loc.frame) from 4
4: debug.tracer(what = TR.GENERIC, index = c(6, 14, 3, 4)) from 3
3: trace("print") from 1

S Poetry c©1998 Patrick J. Burns v1.0

6.4. EXAMPLES 147

2: inspect(trace("print")) from 1
1: from 1

Dumping frames ... Dumped

local frame (frame of error) is parse (frame 6)
d> quit
d> eval mode(print)
[1] "logical"
d> eval get("print", mode="function")
[1] T

The first attempt to look at the mode of print resulted in an error due to a
typo, so inspect essentially calls itself on the error. We don’t care about this
error, so we tell inspect to quit in order to get back to the function that we do
care about. Finally, we confirm that get is doing the wrong thing.

We have now solved the mystery of how trace is going wrong—there is
nothing wrong with trace, the problem is that there is a bug in get. Now we
have to regard our fix for trace as a workaround for the get bug.

the get bug

We now try to zero in on the real problem with get. The first step is to create
a simple function that reproduces the behavior.

"fjjget"<-
function(print = T, mode = "function")
{

print # this line to evaluate it
ans <- get("print", mode = mode)
ans

}

The print argument needs to be used before the call to get in order for it not
to be of mode argument. The function does indeed exhibit the problem.

> fjjget()
[1] T
> fjjget(mode="function")
[1] T
> fjjget(mode="logical")
[1] T
> fjjget(mode="numeric")
[1] T
> fjjget(print=print, mode="numeric")
function(x, ...)

S Poetry c©1998 Patrick J. Burns v1.0

148 CHAPTER 6. DEBUGGING

UseMethod("print")

It appears to be the case that the mode argument is ignored entirely when the
object exists in the current frame. Let’s look at get.default to see what we
are dealing with.

> get.default
function(name, where = NULL, frame, mode = "any",

inherit = F, immediate = F)
{

code <- if(immediate) 20 else 0
if(missing(where)) {

if(missing(frame))
.Internal(get(name, mode,

inherit), "S_get", T,
code)

else .Internal(get(name, mode, frame),
"S_get", T, code + 2)

}
else .Internal(get(name, mode, where), "S_get",

T, code + 1)
}

We try a new function that restricts the search to a frame to see what part of
the code is broken.

> fjjget2
function(print = T, mode = "function")
{

print # this line to evaluate it
ans <- get.default("print", mode = mode, frame

= 2)
ans

}

The following example shows that this works okay. It creates an error, so we go
into the debugger to verify the value of print.

> fjjget2(print=print, mode="numeric")
Error in get.default("print", mode = ..: Object "print"

of mode numeric not found
Dumped
> debugger()
Message: Object "print" of mode numeric not found

1:
2: fjjget2(print = print, mode = "numeric")

S Poetry c©1998 Patrick J. Burns v1.0

6.5. STRATEGY 149

3: get.default("print", mode = mode, frame = 2)
Selection: 2
Frame of fjjget2(print = print, mode = "numeric")
d(2)> print
function(x, ...)
UseMethod("print")
d(2)> 0

1:
2: fjjget2(print = print, mode = "numeric")
3: get.default("print", mode = mode, frame = 2)
Selection: 0
NULL
>

Our conclusion is that the mode argument to get.default is ignored if the
search is unrestricted and the object is found in the current frame. We could
continue to see just what goes wrong, but since the function is internal, we can’t
do anything about it anyway.

6.5 Strategy

Remember to breathe.
The primary thing that you want to do when debugging is to continually

simplify the problem. This narrows down where the problem can be. For
example, when we thought there was a bug in get that was causing trouble
in trace, we wrote a simple function that imitated the pertinent part of the
situation. When you do this, there can be one of two outcomes; either the
problem still occurs in which case you have a simpler problem to solve, or the
bug does not occur in which case you have proved there are more necessary
conditions than are in the simplification. For nothing can be sole or whole That
has not been rent. 23

Bentley (1986) offers these words of advise: “understand the code at all
times, and resist those foul urges to ‘just change it until it works’ ”. The urges
are foul because this tactic is likely to cause other bugs down the line, while the
real bug is here where it looks right.

There are times of frustration when everything is right except the answer.
When this happens to you, remember the following rule.

Capricious Rule 1 The harder a bug is to find, the sillier the error.

For example, I once spent three full days figuring out a bug in some Fortran.
It turned out that the problem was merely that a number that had been scaled

S Poetry c©1998 Patrick J. Burns v1.0

150 CHAPTER 6. DEBUGGING

at the start was not scaled back to the original units. Once I realized that, I felt
like a fool because several of the symptoms pointed directly there—but it was
too simple, and I couldn’t see it. You might try to give me an out by saying
that the code wasn’t mine. It would have been four days if it were my own
because I would be even more sure that everything was right.

When it is taking a long time to find a bug, switch to searching for the
stupidest mistakes possible. Often it helps to make a hardcopy of the code—
it can be easier (for some psychological reason beyond my understanding, and
unfortunately for the trees) to spot mistakes on paper than it is on a computer
screen.

6.6 Bug Reports

Most of the time when programming, the problems that arise are self-imposed.
Ocassionally, however, you may find a bug in code that comes from somewhere
else. You should then send a bug report to the responsible party. The easier you
make it to fix the bug, the more effective your report. Here are the ingredients
of a good bug report:

• Identify the software and hardware involved. Always include the general type
of machine, e.g., Sparc, Pentium, and it is good practice to be more specific.
State what operating system is in use, e.g., SunOS 4.1.3. State the version of
S, e.g., S-PLUS 3.3. Give this information even if you think it is superfluous—
it may not be. If the problem involves graphics, then whatever software and
hardware is involved with the graphics should also be identified.

• Give a simple, direct way to reproduce the problem. The example should
either be self-contained, or only use objects that are easily obtained by the
readers of the report. Random numbers are suitable if you give the seed so that
they are reproducible.

• If the problem results in an error condition, give a traceback of the error.

• State what is wrong. Even if it seems obvious to you, it may not be obvious
to the reader.

• State what good behavior would be.

• State as best you know the limits of the problem. For example, you might
say, “The problem seems to only occur when there is at least one missing value
in argument blah of function blahblah.”

• If you think you know how to fix the problem, give your fix.

• Include any workarounds. A workaround can be a kludgy fix to the problem
function, or a way to get the intended result while avoiding the problem.

S Poetry c©1998 Patrick J. Burns v1.0

6.6. BUG REPORTS 151

Focus on the part about getting a simple example. Many times this exercise
will show you that the bug is in your way of thinking rather than in the software.
Other times it will result that there is a bug, but it is different than you had
thought. It is always educational—I don’t think there is a better way to learn
a language than tracking down bugs.

Here is an example bug report:

Dear Pat,

When I try to use “genopt”, it breaks.

This clearly needs work. Assuming the best of circumstances that Pat is highly
motivated to have “genopt” as clean as possible, and that he has ample time
to work on it, there is virtually no chance of Pat divining what the reporter
witnessed. If Pat is short on either pride or time, then reports like this will
make no dent in his day.

It bears repeating that the object is to allow the receiver to identify, repro-
duce and fix the bug as easily as possible.

I have (of course) presented the easy case. Some bugs are intermittent,
and you may not be able to find a way to consistently reproduce the problem.
Reporting such behavior can be useful, but you should not raise your hopes too
high about the bug being found. Sometimes the data that you are using when
the bug occurs is confidential. Try using different data. If that doesn’t work,
you can consider disguising the data so that confidentiality is not broken. If all
else fails, you can send the report without data that reproduces the problem.

I make it a policy to never submit a bug report the same day that I write it.
At worst I can merely check over it with a fresh mind to ensure that others will
understand it. At best I will realize that there was some twist that I missed,
and the whole report was off the mark.

This is a bit of a digression, but the same sort of principles apply when
asking questions on S-news or similar venues. Here is a minimal list of things
to include in a question to S-news:

• The version of S or S-PLUS that you are using, including the machine type.

• What you want to do. Include enough detail so that it will be clear to the
reader.

• Why you want to do it. It is often the case that there is a simpler way to
achieve the goal that may have nothing to do with your specific question.

S Poetry c©1998 Patrick J. Burns v1.0

152

6.7 Things to Do

Write your own error action function like dump.frames. What do you want it
to do? What happens when there are bugs in it that cause an error condition?

Send bug reports for any problems that you know about.

6.8 Further Reading

Programming Pearls by Jon Bentley includes some debugging advise.
If you are overly frustrated, consider reading something humorous, like a

story by P. G. Wodehouse.

6.9 Quotations

20Cecil Day-Lewis “A Failure”
21Elizabeth Bishop “Visits to St. Elizabeths”
22A. E. Housman “Oh Who is That Young Sinner”
23William Butler Yeats “Crazy Jane Talks with the Bishop”

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 7

Unix for S Programmers

You generally need to know very little about your operating system in order
to use S. But there are a few things that can be helpful. If you are not using
some variant of Unix, then you may wish to skip this chapter, though toolkits
do exist so that you can get much of the functionality discussed here.

7.1 Environment Variables

The two fundamental entities in Unix are processes and files. Files are pretty
intuitive except that they are abstracted to include more than you might expect.
Simple Unix commands result in one process being created, other commands
(like starting S) result in a number of processes. Each process has a parent, and
may spawn children of its own.

The program that gives us a Unix prompt is a process. When we start S
(for example), the process started for S is the child of the process that gave us
the Unix prompt. The child process inherits the environment of the parent.
The child can then change its environment. The environment is the collection
of environment variables and the values that they have.

By convention environment variables are all in upper-case. To access the
value of a variable, put a $ in front of the variable name. So you could issue a
Unix command like

ls $HOME

to list the files in your home directory.

S uses a number of environment variables. Since an escape to Unix creates
a subprocess of S, you can see S’s environment with the S command:

> !env

153

154 CHAPTER 7. UNIX FOR S PROGRAMMERS

(or possibly !printenv). Here is an edited version of the result with only the
most pertinent variables shown. This is using version 3.3 of S-PLUS on an SGI
machine.

> !env

DISPLAY=pburns.seanet.com:0

HOME=/byron/users/burns

LD_LIBRARY_PATH=/usr/lang/SC1.0

LESS=-PPaging with ’less’

MANPATH=/usr/local/man:/usr/share/catman:/usr/man:/usr/catman

PATH=/usr/lang/gnu/bin:/usr/lang/gnu/lib:/usr/sbin:/byron/users/bur

ns/bin:/usr/local/bin:/bin:/usr/bin/X11:/usr/bsd:.:/usr/etc:/etc:/u

sr/bin

PWD=/user/users/burns/spo

REMOTEHOST=pburns.seanet.com

SHELL=/bin/csh

SHOME=/byron/splus/3.3/sgi

SLIC_RSHCMD=rsh %s env SHOME=$SHOME Splus LICENSE server start

S_CC_FLAGS=

S_CLHISTFILE=/byron/users/burns/.Splus_history

S_DEFAULT=NEW

S_DL2_EXTRAS=

S_FRONT_END_RUNNING=1

S_LASERJET_DPI=300

S_LASERJET_PRINT_COMMAND=lp -Ppoe

S_LD_FLAGS=

S_LIB_DYNLOAD2= -lF77 -lI77 -lU77 -lisam -lelf -lmld -lm -lbsd -lsun -lc

S_LIB_STATIC= -lF77 -lI77 -lU77 -lisam -lelf -lmld -lm -lbsd -lsun -lc

S_PAGER=less

S_PATH=/byron/splus/3.3/sgi/splus/.Functions:/byron/splus/3.3/sgi/s

tat/.Functions:/byron/splus/3.3/sgi/s/.Functions:/byron/splus/3.3/s

gi/s/.Datasets:/byron/splus/3.3/sgi/stat/.Datasets:/byron/splus/3.3

/sgi/splus/.Datasets

S_POSTSCRIPT_PRINT_COMMAND=lp

S_PRINTGRAPH_METHOD=postscript

S_PRINT_ORIENTATION=landscape

S_SCRIPT_SCCS_MAJOR=1

S_SCRIPT_SCCS_MINOR=73

S_SHELL=/bin/csh

S_WORK=.Data:/byron/users/burns/.Data

TERM=vt100

USER=burns

XAPPLRESDIR=/usr/lib/X11/app-defaults

XFILESEARCHPATH=/byron/splus/3.3/sgi/splus/lib/X11/app-defaults/%N:/

usr/lib/X11/%T/%N

Most of the S specific variables start with S . They include variables to
control printing, loading object code and so on. The S WORK and S PATH variables
provide what is to be on the search list as S starts up. The first thing in S WORK

that exists is used as the working database, and everything in S PATH is then

S Poetry c©1998 Patrick J. Burns v1.0

7.2. USING UNIX 155

put on the search list.
A variable that doesn’t appear here, but which can be set is S FIRST. This

should contain S commands; the commands are executed when S starts, and
the .First function (if it exists) is not executed.

% setenv S_FIRST ’options(error=NULL); cat("error off\n")’
% Splus
S-PLUS : Copyright (c) 1988, 1995 MathSoft, Inc.
S : Copyright AT&T.
Version 3.3 Release 1 for Silicon Graphics Iris, IRIX 5.2 : 1995
Working data will be in .Data
error off
>

A variable that can be useful in special situations is S SILENT STARTUP. This
suppresses the copyright printing.

% setenv S_SILENT_STARTUP 1
% Splus
error off
>

setenv is the C shell command to set an environment variable. The Bourne
Shell has a different mechanism. There are “shell” variables as well as envi-
ronment variables. The distinction is that the children of a process inherit the
environment variables but not the shell variables.

7.2 Using Unix

Generally the first thing you do each time you meet up with Unix is to type a
password. Always maintain a secure password. Here are some rules for picking
a password:

• Do not use a name or a word as a password. Hackers can automatically try
each item in a list as a guess for your password—a dictionary or a list of users
is a likely choice. In particular, never have the password the same as the login
name.

• Do not use an identification number or birthday as a password—a hacker
could discover these and try them.

• Passwords should be easy to type (so it isn’t easy to observe the password as
you type it in), but should contain some non-alphabetic characters.

• They should also not be too short. There are only about half a million
“words” that contain 4 lower-case letters, but on the order of 1010 that contain 6

S Poetry c©1998 Patrick J. Burns v1.0

156 CHAPTER 7. UNIX FOR S PROGRAMMERS

characters from both lower- and upper-case letters, the digits and a few symbols.
Half a million is not too many for some hackers to try, 1010 is.

Combining two words in some way, or using an acronym are two common
ways of making a good password. I (you’ll be shocked to learn) generally create
an acronym out of a line of poetry. For example, the slow smokeless burning of
decay 24 becomes “ts2bod”. Once you have a good password, it is important to
not let it be compromised, and to change it if you suspect it could have been.
Never put your password in an email message or similar place—a hacker can
search for occurrences of “password”.

When you are at a Unix prompt, you are really conversing with a shell. A
shell is the outer clothing of Unix and may be changed. The most common shell
for interactive use is the C shell, and the most common shell for programming
is the Bourne shell. Alternatives include the Korn shell and the Bourne-again
shell. Most things are the same in all of the shells, but there are differences in
such things as history mechanisms and flow control. The reason that you can’t
use an S command like

> attach("~/.Data") # this won’t work

is that the tilde construct is a C shell device, but attach uses the Bourne shell
to look for the file.

Two universal abbreviations concerning path names is the double dot (..)
which means the directory directly above the current directory, and the dot (.)
which means the current directory. For example to copy a bunch of files to the
current directory, you could give a Unix command like:

% cp ../other_dir/*.c .

The C shell has a history mechanism that can be very handy. Some amazing
things can be done with it, but I’ll just give the most basic commands. !!
repeats the last command. !number repeats the command with that number,
for example, !21 repeats command number 21. !$ gets the last “word” of the
last command, and !* gets all but the first word of the last command. So you
can do something like:

% ls jj*
% rm !$

to first make sure that there is nothing untoward in the expansion, and then
make sure that you get the exact same thing in the second command (rule out
typos).

I stated earlier that Unix files are abstracted to include more than our
usual sense of files. Three important “files” are standard-in, standard-out

S Poetry c©1998 Patrick J. Burns v1.0

7.2. USING UNIX 157

and standard-error. Standard-in is where most Unix programs expect their in-
put to come from. Standard-out is where most programs put their output, and
standard-error is where error messages usually appear. These can be changed
or redirected to actual files, for example

% S < commands.q

makes S look in commands.q for its input, so standard-in is redirected. The
command

% S < commands.q > s.out

is almost like using the S BATCH utility except that BATCH takes care of some
details.

A Unix pipe is related to redirection—the standard-out from one process is
used as the standard-in of another. Here is an example:

% setenv S_FIRST ’invisible()’
% setenv S_SILENT_STARTUP 1
% set jj=7
% echo $jj "+" $jj "/3" | Splus
[1] 9.333333
%

A more practical instance of this is shown on page 191 in the discussion of
CHAPTER and data.dump.

Commands in Unix may be put into the background, meaning that the
process continues to compute but you get the prompt back so that you can
perform other tasks. The command

% S < c.in > c.out

is in the foreground so you need to wait until S has done all of the commands
in c.in before the prompt will come back. In contrast if you type:

% Splus < c.in > c.out &
[1] 21806
% jobs
[1] + Running Splus < c.in > c.out

then you will get the prompt back right away. The & character puts processes
into the background.

Unix recognizes three types of quotes. Both double quote and single quote
are used to protect characters from being interpreted—read some Unix doc-
umentation to get the difference between " and ’. The backquote is used to
substitute in the result of a command. For example

S Poetry c©1998 Patrick J. Burns v1.0

158 CHAPTER 7. UNIX FOR S PROGRAMMERS

% Splus SHOME
/byron/splus/3.3/sgi

returns the directory that is the home of S, so the command:

% ls ‘Splus SHOME‘
Version local/
adm/ module/
bin/ newfun/
cmd/ s/
doc/ splus/
include/ stat/
library/

lists the contents of that directory.

Unix allows you to give an alias to a command. A trivial example is that
someone comfortable with DOS can alias dir to be ls. A less trivial example
is:

% alias pgb ’ps -aux | grep burns’

This creates the command pgb that gives a list of all of the processes that
belong to my login name (more correctly all the processes whose listing from ps
contains “burns”). Another non-trivial alias is the following:

% alias pd ’pushd \!*’

This (in the C shell) is as if you typed “pushd” when you type “pd”, including
whatever arguments there are, if any.

When Unix looks for a command, it uses the environment variable PATH to
decide where to look for the command. This is precisely analogous to the search
list in S. The PATH is a sequence of directories separated by colons. If there are
no characters between two colons, that spot represents the current directory.

You can create your own Unix commands (called scripts) merely by putting
the command(s) into a file and making that file executable. Another way of
getting my pgb would be:

% echo "ps -aux | grep burns" > pgb
% chmod +x pgb

It is customary to put your scripts into a directory called bin directly under
your home directory.

S Poetry c©1998 Patrick J. Burns v1.0

7.3. VOCABULARY 159

7.3 Vocabulary

In each case below, I give only a hint of the full functionality. You can look at
the “man page” for the command with the man command. For example

% man cat
% man man
% man csh

will give you help on the cat command, the man command and the C shell
(including its commands), respectively.

The cat command has several uses, but the most common is to print out
the entire contents of a file. If you want to look at only the top or the bottom
of the file, then use head or tail. An especially powerful feature of tail is
the f flag which continuously prints lines as they are added to the end of the
file until you interrupt it (control-c). My most common use of this is:

% S BATCH b.in b.out
% tail -f b.out

The grep command is used to search for particular strings in lines of files. It
uses regular expressions to do the matching.

ps lists the processes that are current on the machine. One common set of
flags to use is ps -aux with one flavor of Unix, which is basically equivalent to
ps -ef in the other major flavor.

One reason to list the processes is to kill off one of them. The kill
command takes process id numbers and attempts to kill that process (and its
children). I often want to kill an S batch job. To do this, I use my pgb command
to list the processes that I own, I then look for the main process of the S job
and note its id number. So a typical sequence of commands might be:

% S BATCH b.in b.out
% tail -f b.out

(output from what S is doing, control-c to get prompt)

% ps -ef | grep burns
burns 21741 21740 0 19:15:40 pts/1 0:00 -csh
burns 21806 21741 80 19:37:13 pts/1 2:39 /byron/splus/3.
burns 21812 21741 7 19:40:57 pts/1 0:00 ps -ef
burns 21810 21806 0 19:37:13 pts/1 0:00 /byron/splus/3.

% kill -9 21806
% !ps
ps -ef | grep burns

S Poetry c©1998 Patrick J. Burns v1.0

160 CHAPTER 7. UNIX FOR S PROGRAMMERS

burns 21741 21740 0 19:15:40 pts/1 0:00 -csh
burns 21817 21741 0 19:42:18 pts/1 0:00 grep burns
burns 21816 21741 4 19:42:18 pts/1 0:00 ps -ef

The 9 flag on kill is needed because S batch jobs don’t die easily, so extra force
is necessary.

Each file in Unix has a set of permissions attached to it. There can be
permission to read, to write, and to execute. Such permissions can be given to
the owner of the file, the owner’s group, and to all users. The chmod command
is used to change permissions. chmod understands the letters r, w and x with
either a plus or minus in front. For example, if you want to block the S auditing
process, you can make the .Audit file in the working database unwriteable with
a command like:

% chmod -w .Data/.Audit

To make it writeable again, you would do:

% chmod +w .Data/.Audit

To see what the permissions are on a file, you can use the l flag of ls:

% ls -l .Data/.Audit

chmod also will take a three digit octal representing the permissions. The digit
positions refer to the user, the group and everyone; the numbers are the sum of
the permissions where 4 is read, 2 is write and 1 is execute.

The permissions of files as they are created is controlled by umask.

The diff command is used to see what is different between two files. The
diffsccs function (page 51) is an example of its use.

Links are a way of saving disk-space (and a means of abstraction). A link
essentially just gives more than one name to a file. On several platforms S-
PLUS links help files that are for more than one function, rather than having a
separate help file for each. The ln command creates links.

The at command allows you to start processes at an arbitrary time. You
might for instance want to start an S batch job two hours after you leave when
you presume that everyone will be off the system. The crontab command
is used to start jobs on a regular schedule, for example every weekday at five
o’clock.

The make command is extraordinary software. Here’s the idea: you have
blocks which depend on other blocks, which may depend on yet more blocks, etc.

S Poetry c©1998 Patrick J. Burns v1.0

7.3. VOCABULARY 161

If one or more of the blocks change, you want everything updated that needs to
be (but unnecessary work should be avoided). make provides such functionality.
The magic to be performed is stated in a file named Makefile.

DANGER. It is important to know that tabs are an important character in
Makefiles. If you are using vi, you can see the actual characters in a file with
the command :se list, and :se nolist turns it off.

One example of when make is useful is if you have some C or Fortran code
that depends on a bunch of libraries and you want to dyn.load it into S. make
can be used to give the commands that creates the object file that can be loaded
into S. Thus making it trivial to recreate the object file after you have edited
your code. This is a traditional use of make, but its general principle is expansive
enough that it can be used for a variety of purposes. the owls were bearing the
farm away 25

The find command does more than you can imagine, but a simple use of
it is to find files that you don’t know the location of. The command

% find . -name sccs.q -print

looks for files named “sccs.q” in the current directory and all its subdirectories
and then prints the location of any that it finds. A common mistake is to forget
to give the directory from which to start. If you want to look for files that match
a certain pattern, then you can give find a wildcard pattern (as opposed to a
regular expression) but you must put quotes around it:

find . -name ’sccs*’ -print

Functionality for finding out about different versions of a Unix command in
the current environment is performed with which and whereis.

% which ps
/bin/ps
% whereis ps
ps: /bin/ps /usr/bin/ps /sbin/ps
/usr/share/catman/u_man/cat1/ps.z

The which command states which version of the command will be used, while
whereis gives the locations where the command (or its documentation) is found
on the current path.

The stty command is used to control terminal commands. To see the more
important (in someone’s eyes) settings, just type the command:

S Poetry c©1998 Patrick J. Burns v1.0

162 CHAPTER 7. UNIX FOR S PROGRAMMERS

% stty
speed 9600 baud; -parity hupcl clocal
line = 1; intr = ^C; old-swtch = ^@; dsusp = ^@;
brkint -inpck icrnl onlcr tab3
echo echoe echok echoke

Add a -a flag to see all of the settings. A common setting to change is the key
that is used to erase characters. The command is

% stty erase

where after the “erase” there is a space, and then you hit the key that you want
to use.

Some versions of stty allow you to change the number of rows and columns
for the display so that programs like editors will work properly.

The test command is quite useful in Unix programming. The following S
function uses test to give information on file names.

"filetest"<-
function(filename, directory = F, read = F, write = F,

execute = F, size = F)
{

fbe <- unix(paste("test -f", filename, "-o -d",
filename), out = F) == 0

extras <- c(directory, read, write, execute,
size)

ans <- c(exists = fbe, directory = NA, read =
NA, write = NA, execute = NA, size =
NA)

if(!fbe || !any(extras))
return(ans)

cmds <- paste(c("test -d", "test -r",
"test -w", "test -x", "test -s"),
filename)

for(i in seq(along = extras)) {
if(!extras[i])

next
ans[i + 1] <- unix(cmds[i], out = F) ==

0
}
ans

}

Here are some examples of its use:

S Poetry c©1998 Patrick J. Burns v1.0

7.3. VOCABULARY 163

> filetest("polygamma.q")
exists directory read write execute size

T NA NA NA NA NA
> filetest("SCCS", dir=T, write=T)
exists directory read write execute size

T T NA T NA NA
> filetest("not_there", size=T, dir=T)
exists directory read write execute size

F NA NA NA NA NA

It is used in portoptgen on page 348.

Although the use of window systems reduces the need, the pushd and popd
commands in the C shell are still handy. These two commands implement the
notion of a directory stack. pushd adds to the stack (among other things), and
popd removes the top directory from the stack. Suppose we start in our home
directory and give the command:

% pushd proj1
~/proj1 ~

We are now in the proj1 directory and home is the second directory in the
stack. We can add to the stack by giving a new directory to pushd:

% pushd ~/proj2
~/proj2 ~/proj1 ~
% pushd
~/proj1 ~/proj2 ~

pushd with no arguments switches the top two directories in the stack. If we
do:

% pushd +2
~ ~/proj1 ~/proj2

then the third directory is brought to the top (and the stack is treated circu-
larly). The “2” can be generalized to higher numbers, by the way.

% pushd
~/proj1 ~ ~/proj2
% popd
~ ~/proj2
% dirs
~ ~/proj2

popd removes the top directory, and dirs displays the directory stack.

S Poetry c©1998 Patrick J. Burns v1.0

164 CHAPTER 7. UNIX FOR S PROGRAMMERS

The shar command is a way of bundling a number of files into one file.
Much of the S software on statlib is in shar files. A shar file contains the files to
be created and Unix (Bourne shell) instructions on what to name the files and
where the boundaries of the files are. The top of a shar file generally states how
to unpack it. You should be in the directory where you want the files to live,
and give a command like:

% /bin/sh sharfile

to unpack the file sharfile.

awk and sed are used to manipulate text, such as making substitutions.
These are both good programs, but if you don’t know them, I suggest that
you learn Perl instead. Perl is a language that encompasses awk, sed and Unix
scripts. If you know both Perl and S, you can rule the world.

Your last wish should always be for more wishes. The apropos command is
used to try to find documentation on commands that relate to a certain subject.
You might type:

% apropos tree
ftw, nftw (3C) - walk a file tree
tlink (1) - clone a file tree using symbolic links
tsearch, tfind, tdelete, twalk (3C) - manage binary search trees

and you will get back a brief description of a number of commands, most of
which are likely to have nothing to do with your intention; or you might get
nothing back.

7.4 Things to Do

Change your password if it is poor or known to others.

Check the permissions on your files and see if they are how you want them.

Read the man page of interesting commands.

7.5 Further Reading

Unix Power Tools by Peek, O’Reilly and Loukides is a very good book for
learning Unix. It presumes a little competence with Unix but goes a long way
toward teaching the whole of it. Unless you are a Unix expert, the answer to
any Unix question that you have is likely to be in this book. I’ll admit that it
isn’t always easy to go directly to that answer, but the journey that you take is
often as useful as getting the answer to your original question.

S Poetry c©1998 Patrick J. Burns v1.0

7.6. QUOTATIONS 165

7.6 Quotations

24Robert Frost “The Wood-Pile”
25Dylan Thomas “Fern Hill”

S Poetry c©1998 Patrick J. Burns v1.0

166

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 8

C for S Programmers

C is a natural partner for S. If you know C but not S, then the next section can
help you to learn S.

8.1 Comparison of S and C

The big difference between C and S is that C is compiled while S is interpreted.
Thus C is much faster at calculations than S is—changing strategic portions of
S code into C can often cause execution time to drop from minutes to seconds.
This science is then like gathering flowers of the weed 26

S code and C code look very similar (this is not accidental). However, there
are some striking differences.

DANGER. The most bothersome discrepancy is that indexing in C is zero-
based while indexing in S is one-based. So saying x[1] gets the first element
in S but the second element in C. Although this difference is a fertile source
of bugs, I think each language has done the right thing—zero-base is good for
machines where C has its strength, and one-base is good for humans.

C requires that everything has its type declared. C also requires the user to
take care of allocating and freeing memory, while this is automatic in S. Nothing
is vectorized in C. C demands that each command end with a semicolon (there
is no penalty for a C programmer who puts such semicolons in S code).

C has a number of operators that S does not. The most important of these
are the increment operators like i++ and i += n. Another example is the ability
of C to operate on bits.

Names in S and C have similar forms except for one important difference.
In S, periods are the only non-alphanumeric character allowed in names. In C,

167

168 CHAPTER 8. C FOR S PROGRAMMERS

it is underscores that are the only non-alphanumeric character. Furthermore,
the period is an operator in C, and the underscore is an operator in S. Like S, C
distinguishes lower-case from upper-case letters. There is a limit to the length
of a name in C, but the ANSI standard requires that that length be at least 31
characters.

There are two flavors of C, the original version is known as K&R C after
Kernighan and Ritchie who wrote it and the book describing it. The other is
ANSI C. The ANSI standard mainly extended and clarified the language, but
the most visible change is in how arguments to functions are given. The old-
style (K&R) contains just the argument names within the argument list, and
the arguments are declared outside the list, as in:

double my_fun(x, n)
long n;
double *x;

The new-style (ANSI) contains the declarations within the argument list:

double my_fun(double *x, long n)

Being old-fashioned, most of my example C functions follow the old-style.

A feature of C that is entirely novel relative to S is pointers. A pointer
is an object that contains the address of some value. In S you can only grab
hold of the values, never the address. Pointers are what tend to cause the most
confusion to novice C programmers. There really isn’t all that much to them
though, and there’s no need to panic. If you have a pointer (which is the address
of something), then you can “dereference” it (get the value at that address) with
the * operator. (* also means multiplication as it does in S, but which is meant
is distinguished by context.) A code fragment is:

double *xpointer, old, new;

old = *xpointer;
*xpointer = new;

Here both old and new are double-precision numbers and xpointer is a pointer
to a double. The original value at the xpointer address is given to old, then
the value of new is placed at that address.

You can also get the address of an object with the & operator (this is sort of
the inverse of the dereferencing operator). An example that is subtly different
from the last is:

double *xpointer, old, new;

old = *xpointer;
xpointer = &new;

S Poetry c©1998 Patrick J. Burns v1.0

8.1. COMPARISON OF S AND C 169

C Operator Task S Equivalent
[array subscript [
. structure member $
-> structure pointer member $
& address of none
* dereference none
++ increment none
-- decrement none
* multiply *
/ floating or integer divide / %/%
% modulo %%

<< >> bit shift none

Table 8.1: Some C operators and approximate S equivalents, if any.

Operator C Meaning S Meaning
. structure member character in names
-> structure pointer member assignment to right
_ character in names assignment
& address of or bitwise and vectorized and
^ bitwise exclusive or exponentiation
| bitwise or vectorized or
? ifelse trinary operator help
: ifelse trinary operator sequence
= assignment argument matching
introduce preprocessor command introduce comment

Table 8.2: Operators with different meanings in C than in S

This still has the same value for old and xpointer still points to the same value.
However, in the first example the value at one address is changed, while in the
second it is addresses that change. The second example would be unusual—the
first example would more often be correct. The & operator is most commonly
used in function calls where the function is expecting a pointer, but you have a
value.

Table 8.1 lists some of the operators in C, and table 8.2 lists some operators
that have the potential for confusion between C and S. Exponentiation in C is
done with the pow function in math.h. The modulo operator % in C works only
on integers, but %% in S works with floating point numbers also.

Flow control is almost identical in the two languages. In particular, braces
are used precisely the same to group multiple statements into a single statement.
A notable exception is that the control mechanisms for for loops are distinctly
different. The format and to some extent the functionality of switch differs in
C and S. C has a do-while loop that is absent in S (repeat can be used to do

S Poetry c©1998 Patrick J. Burns v1.0

170 CHAPTER 8. C FOR S PROGRAMMERS

the same thing). C does not have a repeat, but this is easily replaced with
while(1). One more difference is that next in S is continue in C (I favor S
in this regard).

An example of a for loop in S is:

for(i in 1:10) { x[i] <- i }

while a similar for loop in C would be:

for(i=0; i < 10; i++) { x[i] = i; }

So there are three parts inside the parentheses of a C for. The first part is the
initialization. The second part is a test, where the loop is exited the first time
that the test is false (so it is possible that the body of the loop is never entered).
The third part states what to do after each iteration. (Notice that the resulting
vector in C will be different than the one in S.)

If you want more than one statement in either the first or third part, you
can put commas between the statements. Here’s an example:

for(i=0, ij=0; i < 10; i++, ij += n)

Another differeence is that the iteration variable in an S for is local to the loop.
In C it is not local to the loop, and—as we’ve seen—there need not even be a
unique variable.

An example of the format of a switch statement in C is:

switch(x) {
case ’b’: y += 3; z = 6; break;
case ’d’:
case ’e’: y += 2; return(y);
case ’h’: z += 8; /* fall through */
case ’n’: y += 9; break;
default: y -= 8; break;

}

This is a bizarre example, but shows the rules. The switch variable can be either
a character or integer—in this case it is character. The body of the switch is one
expression which is divided by a number of case statements. Case b shows that
one difference with S is that there can be any number of statements for a C case,
while S demands a single expression for a case (multiple statements need to be
surrounded by braces). Case d is empty which means that it is identical to the
next non-empty case—this is like S except that S doesn’t have this feature for
numeric variables. Case h shows how the C switch is fundamentally different
than that of S. Since there is no break or return in case h, it goes into case n
also. Hence the order of the cases in a C switch can make a difference. It is
typical that each case end with break.

S Poetry c©1998 Patrick J. Burns v1.0

8.2. LOADING CODE INTO S 171

C has a unique way of specifying comments—they begin with /* and end
with */. You can have anything in a comment except */ (that is, comments
don’t nest). A definite advantage to this form of comment delimiting is that
it is easy to comment out a section of code. There is no equivalent in S to do
this. However, there is a trick—you can put the code inside an if that is always
FALSE.

The # symbol is used in preprocessor commands. The C preprocessor is
a powerful feature of C that inserts include files, makes platform dependent
versions, and many more things—there is no equivalent feature in S. The pre-
processor performs its commands to change the source file before the compiler
sees it. For example, the first line of a C source file might be:

#include <S.h>

This inserts the contents of the S.h file into the source file. The angle brackets
mean that the preprocessor is free to look in a number of locations for the
file. The S.h file is the header file that comes with S—it contains a number of
definitions that can be used in C code. Although code using S.h is often called
from S, it need not be.

The next step is to compile the source code. You can do this directly, but
if you have S-PLUS, then you can use the utility created for the purpose. An
example is:

Splus COMPILE myfun.c

The COMPILE utility is meant to perform an appropriate compilation on whatever
platform you are using. And often does.

8.2 Loading Code into S

The C functions that can be called from S are of a restricted class. All of the
arguments must be pointers (which makes sense if you consider that S vectors
translate to C arrays). The function is typically declared as void since return
values are thrown away. The arguments may be *long (integer or logical in S),
*double (double in S), *float (single in S), or **char (character in S). There
is an exception—see the discussion of the pointers argument to .C on page
177.

Note that structures are not allowed as arguments. If you learn C especially
for S, there is the tendency to avoid the use of structures since they may not
be passed in. Fight this impulse—structures in C are the equivalent of lists in
S, and are very useful.

If you have existing C code that you want to use in S, it should not be
difficult to write a wrapper function in C so that it obeys the requirements that
S has. There is a limit on the number of arguments allowed, but this is large
enough that it should seldom be of concern.

S Poetry c©1998 Patrick J. Burns v1.0

172 CHAPTER 8. C FOR S PROGRAMMERS

The S executable (the file that contains the stuff that makes S actually
go) contains a symbol table. First off, a symbol is a translation of a routine
name based on platform specific rules. Generally a symbol is the routine name
with underscores before and/or after it. C symbols are different than Fortran
symbols. In S-PLUS you can do:

symbol.C("fjj")
symbol.For("fjj")

to see how your system does it. A symbol table associates each symbol that it
knows to an address.

When you load code into S, you are extending or changing the symbol table.
The two main divisions of loading code are static loading and dynamic load-
ing. Static loading means that you combine the executable as it stands with
additional code and get a new (larger) executable. Dynamic loading is when
the executable is already executing and you add the code to this instance of
execution—the executable is not changed, merely the S session.

Static loading is done with the LOAD utility. One good use of static loading is
if everyone at a site needs access to a specific set of routines that are thoroughly
debugged. These routines can be statically loaded into S, and the script with
which users start S can point to this new executable. The other good use for
static loading is when dynamic loading is unavailable or doesn’t work for the
code at hand. The disadvantage of static loading is that a new executable is
created—the size of which is measured in megabytes. An explanation of how
LOAD works is on page 191.

In S-PLUS there are three functions that do dynamic loading: dyn.load,
dyn.load2 and dyn.load.shared. Not all of these will be available on a

particular platform.

dyn.load is the simplest of the three. It takes a character string which is
the name of an object file; all of the symbols in the file need to be defined either
in the file or in the S session. (Actually dyn.load will take a vector of file
names—the order of the files can matter because it is like a series of individual
calls to dyn.load.)

dyn.load2 and dyn.load.shared are different ways to solve the same prob-
lem. These functions allow symbols that are defined in neither the source file
nor the S session to be pulled from libraries. Unlike dyn.load, you can not
make two different calls to dyn.load2 to load related symbols—all the symbols
must be put into the S symbol table with a single call to dyn.load2.

Troubles with dynamic loading are fairly common, and often hard to solve.
The more complex the situation with symbols, the more likely problems will
arise. It is not likely that dynamically loading a self-contained file will fail. If
using dyn.load2 or dyn.load.shared doesn’t work, you can try using the Unix
command ld to create a file that contains all of the necessary symbols so that
using dyn.load is a possibility. Picturing what is happening with the symbols

S Poetry c©1998 Patrick J. Burns v1.0

8.3. ARRAYS 173

object S C Fortran Perl
single value vector scalar scalar scalar
ordered, 1 type vector array vector array, list
rectangle of 1 type matrix matrix
hyperrectangle of 1 type array array
collection, several types list structure

Table 8.3: Terminology from various languages.

can be a substantial help in solving a loading problem. A tool that can help is
the NM utility discussed on page 192.

One loading problem that can arise is when there are duplicate symbols. This
generally happens when the same function is in two different places. However,
there is the possibility that there are two different functions with the same name.
C provides a very good way of keeping this from happening. All C functions
except those that are used in a .C call in S can be declared static. This means
that you can have a C function called sort and it will not conflict with any
other “sort” as long as you declare it static in your C source file. If you declare
as many functions as possible to be static, then there will only be a few symbols
that can possibly conflict. To reduce the possibility that these remaining names
will conflict with something, you can put a personal prefix or suffix on the name.
Many of the in-built C routines in S begin with a capital S and an underscore.
For instance, there could well be a C function called “S sort”. My personal
convention for names that are going to be used in S is to put “ Sp” at the end;
so my sort routine—if it were not static—would be called “sort Sp”.

8.3 Arrays

It is common for C programmers to think of matrices as pointers to pointers
so that they can be subscripted like:

cmat[i][j]

However, an S matrix passed into C is merely a C array (i.e., a pointer). If
you have code that uses pointers to pointers for matrices, then you will need a
wrapper function in C to convert back and forth between the two conventions.
Table 8.3 lists terminology from some languages for a few simple data struc-
tures. There is plenty of room to trip over the nomenclature between S and
C. For example, a C programmer may well think that a “character vector” is
a character string, while S programmers know that a “character vector” is a
vector containing character strings.

If you are writing your own numerical code, then I advise treating matrices
in C the same way that S does. You need to do some arithmetic to get a specific
row and column, but it is easy to do. This is the way that Fortran handles

S Poetry c©1998 Patrick J. Burns v1.0

174 CHAPTER 8. C FOR S PROGRAMMERS

matrices also, so Fortran matrix code can be called from C when using this
convention. It is simple to generalize to higher dimensional arrays.

Here is an example that computes quadratic forms x′Qx where Q is an n by
n matrix and x is a vector. The S function generalizes this to allow a number
of quadratic forms to be evaluated in one call by passing in a matrix x, each of
whose columns is an x in the quadratic form.

static double
quad_form(double *Q, double *x, long n)
{

long i, j, ij;
double ans = 0.0;

for(i=0; i < n; i++) {
for(j=0, ij = i * n; j < n; j++, ij++) {

ans = ans + x[i] * Q[ij] * x[j];
}

}
return(ans);

}

void
quad_form_Sp(double *Q, double *x, long *xdim, double *ans)
{

long i, ii, n;
double quad_form(double*, double*, long);

n = xdim[0];

for(i=0, ii=0; i < xdim[1]; i++, ii += n) {
ans[i] = quad_form(Q, x + ii, n);

}
}

Stepping through the matrices is made efficient by incrementing the subscripts
rather than always performing a multiplication. Here is the S function that calls
this code.

"quad.form"<-
function(qmat, x)
{

dq <- dim(qmat)
dx <- dim(as.matrix(x))
if(length(dq) != 2 || dq[1] != dq[2])

stop("qmat must be a square matrix")

S Poetry c©1998 Patrick J. Burns v1.0

8.4. C CODE FOR S 175

if(dx[1] != dq[2])
stop("qmat and x do not match")

if(!is.loaded(symbol.C("quad_form_Sp")))
poet.dyn.load("quad_form.o")

.C("quad_form_Sp",
as.double(qmat),
as.double(x),
as.integer(dx),
double(dx[2]))[[4]]

}

This function saves a little time compared to the usual S operation by using one
operation instead of two matrix multiplications. If you really want to evaluate
a number of quadractic forms with the same kernel, then this will save a lot of
time. If the kernel matrix is symmetric and large, then some more efficiency
can be squeezed out by modifying the looping in quad form.

8.4 C Code for S

One type of functionality that the S header provides is for handling missing
values and special values. The C functions include is na, is inf, na set,
na set3 and inf set. (Actually these are generally macros rather than

functions, so you don’t want to have side effects in the arguments.) The first two
arguments to each of these is a pointer to the value of interest, and the storage
mode of the object (back in S), the names to use for the modes are listed in
table 8.4. is na and na set3 use the symbols Is NA and Is NaN to distinguish
between missing values and not-a-numbers. So to set the ith element (i + 1th
in S) of x to be a not-a-number, you would say:

na_set3(x + i, DOUBLE, Is_NaN);

You can see some of the C functions that handle special values in the code for
the digamma function on page 262. If you want to allow missing values in the
arguments to your C function (or Fortran subroutine) that is called from S,
then you need to use the NAOK argument to .C. The specialsok argument in
S-PLUS allows infinite values. Neither of these arguments may be abbreviated.

C code that will be called by S and needs to allocate memory can use the
S alloc C function. This is similar to malloc, but does not have a correspond-
ing free statement. The memory that is allocated by S alloc is automatically
freed when the S memory frame containing the C call is exited. It is freed even
if there is an abnormal exit from the C code, so you are guaranteed that the
space will be freed.

If your routine uses workspace, then it is better to allocate the workspace in
C with S alloc rather than passing it in through the call to .C. S will copy the

S Poetry c©1998 Patrick J. Burns v1.0

176 CHAPTER 8. C FOR S PROGRAMMERS

S storage mode Name in C C declaration
logical LGL long
integer INT long
single REAL float
double DOUBLE double
complex COMPLEX complex

Table 8.4: Modes within C Code.

object in the latter case. Use of S alloc might look like:

long *iwork;
double *work;
work = (double *)S_alloc(n, sizeof(double));
iwork = (long *)S_alloc(2 * n, sizeof(long));

You can issue the equivalent of stop and warning statements in your C
code called by S. These start with PROBLEM followed by a string, followed by
arguments to be placed in the string (if any), followed by another magic phrase
indicating if it is an error or a warning. An example of a warning is:

PROBLEM "bad, bad, i is %d, x is %g", i, x
WARNING(NULL_ENTRY);

An example of an error statement is:

PROBLEM "really bad" RECOVER(NULL_ENTRY);

Note that there are no parentheses (they are in the definition of the PROBLEM
macro and its mates), and you need not have a newline at the end of the string.

S-PLUS makes available routines so that you can use the S random number
generator in your C code. Before you can generate any random numbers, you
need the line:

seed_in((long *) NULL);

This makes the random seed available. After all random numbers have been
generated, say:

seed_out((long *) NULL);

This updates the stored random seed, so that the same “random” numbers will
not be generated repeatedly. The two functions that generate random numbers
are unif rand and norm rand, both of which return a double.

S Poetry c©1998 Patrick J. Burns v1.0

8.4. C CODE FOR S 177

The example below shows how to use the random functions. It produces a
sequence of random Gaussian deviates that terminates the first time that one of
the random numbers is greater than a specified value. It also introduces a couple
more tricks for C programs in S—the S realloc function and the pointers
argument to .C.

#include <S.h>

void

rand_seq_Sp(pars, ipars, ans, alen)

long *ipars, *alen;

double *pars, **ans;

{

long count=0, curlen, incr=ipars[0], safety=ipars[1];

double threshold=pars[0], rmn=pars[1], rsd=pars[2];

double this_rand;

*ans = (double *)S_alloc(incr, sizeof(double));

curlen = incr;

seed_in((long *) NULL);

while(1) {

this_rand = norm_rand() * rsd + rmn;

if(count >= curlen) {

S_realloc(*ans, curlen + incr, curlen,

sizeof(double));

curlen += incr;

}

(*ans)[count++] = this_rand;

if(this_rand > threshold) break;

if(count >= safety) {

PROBLEM "reached maximum length, exiting"

WARNING(NULL_ENTRY);

break;

}

}

seed_out((long *) NULL);

*alen = count;

}

The random part of this function is easy. Reasonably easy is the use of
S realloc—when the space allocated by S alloc is no longer large enough,
S realloc allocates a new, larger space and takes care of transferring the old
values to the new location. Its arguments are the pointer to the space, the new
length, the old length, and the size of the elements.

Not so transparent is what is happening with ans. Generally ans would be
a pointer to double, but here it is a pointer to a pointer to double. The reason
is that the length of ans is not known in advance, so it uses the pointers

S Poetry c©1998 Patrick J. Burns v1.0

178 CHAPTER 8. C FOR S PROGRAMMERS

argument to the .C S function. Here is the S function that calls this code:

"fjjrand.seq"<-
function(threshold, mean = 0, sd = 1, increment = 1000,

safety = 10000)
{

if(!is.loaded(symbol.C("rand_seq_Sp")))
poet.dyn.load("rand_seq.o")

ans <- .C("rand_seq_Sp",
parameters = as.double(c(threshold[1],

mean[1], sd[1])),
as.integer(c(increment[1], safety[1])),
sequence = double(0),
pointers = c(F, F, T))[c("sequence",
"parameters")]

names(ans$parameters) <- c("threshold", "mean",
"stand dev")

ans$call <- match.call()
ans

}

Notice that there is one less argument to .C (excluding the pointers argument)
than there is in the C function. Each argument to .C that is a pointer corre-
sponds to two arguments in C—the first C argument is a pointer to a pointer,
and the second argument is a pointer to long that gives the length of the object.

DANGER. When using the pointers argument, don’t forget to set the length
of the variable-length objects in C.

In the call to .C the first element of threshold and several other variables are
extracted when combining variables together for arguments to the C function.
This ensures that a misspecified S argument will not completely mess up the C
call. An alternative strategy is to check the length of each variable.

S-PLUS gives you routines that help you when calling Fortran from C. See
the PORT optimization example on page 340.

A C function that is included with S is call S which allows C code used
by S to go back to S and evaluate an S function. I’m not going to give an
example of its use. Although it does have its place, it is less useful than might
be thought. (You still have the overhead of the S function call, so you can’t
gain speed by looping in C instead of S.) Examples of how to use call S are in
Becker, Chambers and Wilks (1988) and Spector (1994).

S Poetry c©1998 Patrick J. Burns v1.0

8.5. DEBUGGING 179

8.5 Debugging

If you are unlucky, one of the first things you will see when you use an S function
that calls some of your C or Fortran code is something like:

System terminating: bad address

and you are thrown out of S and back into the operating system. The system
terminating happens when S detects that something bad has happened, and
it kills itself to prevent permanent damage in case of corruption. The system
terminating gives an indication of what went wrong. The most common is “bad
address” which is often an indication of running off the end of an array, or
an argument mismatch. The second most common is “bus error” which is an
indication of serious confusion. I never heard that sound by day. 27

If you see a system terminating in an S session in which no local code is used
and you are not masking any in-built functions, then there is a bug. You should
report this to your provider of S. A system terminating can be caused from a
corrupted version of an in-built function—and it need not be apparent what
the problem is. Likewise, locally written code that is loaded into S can cause a
problem that only later results in a system termination. Usually, though, the
termination occurs immediately.

The most common problem with .C or .Fortran calls is that there is the
wrong number of arguments or they are not declared properly. Each argument
in a .C or .Fortran call needs to be either coerced to the correct storage mode
or to have had its storage mode coerced directly before the call. If not, it is a
bug.

Capricious Rule 1 Your skin crawls when you see an argument to .C or
.Fortran whose storage mode is not coerced.

DANGER. Storage mode integer in S corresponds to long in C. On many
machines a long is identical to an int so it is possible to declare S integers as
int in C and have the program run. Don’t do it. Some day when you try to
make this go on some other machine where the long-int identity doesn’t hold,
there are likely to be a number of frustrating hours wasted trying to track down
the problem. Remember that the more subtle and silly the mistake, the harder
it is to find.

DANGER. A common way to have the number of arguments different in the
.C call and the C function is to edit the C function and recompile, but forget
to edit the S function.

S Poetry c©1998 Patrick J. Burns v1.0

180 CHAPTER 8. C FOR S PROGRAMMERS

On Unix the lint command looks for mistakes in C code, like mismatches
of type and variable numbers of arguments. If you have S-PLUS and you are
using S.h, then you can use a command like:

lint -I‘Splus SHOME‘/include myfun.c

This tells lint the appropriate place in which to look for the S header file.

A tried and true debugging technique is to insert print statements into the
code. The C function printf is the most likely candidate to use to print
messages. The first argument to printf is a character string which may contain
excaped characters such as backslash-n, and it also typically contains locations
for any subsequent arguments. The locations for the additional arguments are
marked with a symbol that starts with % and is followed by a letter that indicates
the type of object to be printed. Here’s an example:

printf("i is %d x sub i is %f\n", i, x[i]);

which might result in the output:

i is 0 x sub i is 4.9
i is 1 x sub i is 9.3

If you are inserting print statements because the function is hanging and you
want to know how far it is getting, then you will need to flush the output. To
save time, C puts output into a buffer and only really writes once the buffer is
full. So if the buffer never fills, you won’t see your output. The usual command
to flush printf output is:

fflush(stdout);

(stdout is defined in S.h.)

When I’m in a disciplined mood, I make an initial debugging statement in
the C code that prints a version number. The routine is: modify the C code,
compile the C code, load the code into S, try out the code. Once I’ve done this
several times and frustration is setting in, I sometimes forget either to compile
the code or load the code so it appears that my last change had no effect when in
fact the last change is not being used. Of course I need to remember to change
the version number when I edit the code in order for this trick to be effective.

There are times when optimization during compilation—especially a high
level of optimization—causes bugs to appear. My strategy is to use the standard
level of optimization except on files that are primarily arithmetic; and I generally
time the computations to see if the optimization really works.

S Poetry c©1998 Patrick J. Burns v1.0

8.6. COMMON C MISTAKES 181

8.6 Common C Mistakes

DANGER. The most common mistake is to leave out semicolons. This is
seldom a serious mistake since the compiler will catch most instances. A more
serious mistake can be putting a semicolon where it doesn’t belong. In:

if(i); j = 0;

the code will compile without a problem, but will not do what was probably
intended. The code as it stands will test the value of i, then do nothing, and
finally always set j to 0. If the intention is to set j to 0 if i is not, then that
first semicolon has got to go.

DANGER. It is easy to get the indexing wrong on an array. It is natural to
translate the S expression:

for(i in 1:n)

into C as:

for(i=1; i <= n; i++) /* WRONG */

Once you are past that, you might try the more subtle:

for(i=0; i <= n; i++) /* STILL WRONG */

You really want:

for(i=0; i < n; i++) /* RIGHT */

DANGER. Be careful when performing division with integers—the result is
an integer, not a floating point number. Integer division doesn’t commute like
floating point division does. Consider the code fragment:

long n, ans1, ans2;
ans1 = n * (n + 1) / 2L;
ans2 = n / 2L * (n + 1);

ans2 is not the same as ans1 unless n is even. ans1 is probably what was in-
tended. An extra pair of parentheses to guarantee the computation order would

S Poetry c©1998 Patrick J. Burns v1.0

182 CHAPTER 8. C FOR S PROGRAMMERS

be a good idea.

DANGER. If you have a statement containing:

xmat[i,j] /* WRONG */

then it is wrong (but it will compile). The comma operator evaluates each state-
ment but has the value of the right-most statement. So the above is equivalent
to xmat[j].

DANGER. Another common mistake is to use = where == is desired. The
statement:

if(j=4) j++; /* WRONG */

will once again compile, but not do the right thing. After this statement j will
always be 5 no matter what it is before the statement. C, like S, returns a
value from assignment. Such a mistake is not possible in version 3 of S, since
it is a syntax error. (You will have the opportunity for such bugs in version 4,
however.)

DANGER. Do not use print instead of printf. The code will compile, but
have severe problems in the execution.

8.7 Fortran

I give Fortran less emphasis partly from personal taste (though I admit that
newer versions of Fortran are definite improvements on older ones), and partly
because there are more complications when interfacing Fortran to S than when
interfacing C. However Fortran has the one big advantage that lots of algorithms
are programmed in it. It is usually faster and safer to have a little hassle
interfacing existing Fortran to S than to write new C code.

A squabble between Fortran and S is that S doesn’t handle Fortran in-
put/output. If you have the source code for the Fortran, then the easiest thing
to do is to comment out all of the input/output statements. This step may be
as simple as just commenting out lines, or it may involve extensive changes to

S Poetry c©1998 Patrick J. Burns v1.0

8.7. FORTRAN 183

have data passed in through arguments rather than read in. If you don’t have
the source code, then you may need to ensure that S has a number of symbols
loaded that it generally doesn’t have by writing C functions and loading them.
For example, one function might look like:

#include <S.h>

s_wsFe()
{

fprintf(stderr, "Trying to use Fortran I/O\n");
}

S does come with some Fortran subroutines that produce printed output
in S format. These are often useful for debugging purposes. The names of the
routines are dblepr for double-precision data, intpr for integers (and logicals),
and realpr for single-precision numbers. Each of these allows a message also.
An example call is:

call dblepr(’x is’, -1, x, nx)

The first argument is a message. The second argument is the length of the
message, though most compilers are nice enough to do the counting for you if
you give it a negative 1. The third argument is the name of the variable that
you want to print, and the fourth argument is the number of elements to be
printed. You do not need to print all of the values in the variable—it will print
the first few values if you choose.

DANGER. At least in some versions of S, the name of the subroutine that you
are calling in the .Fortran call needs to be in all lower-case. Fortran doesn’t
care about the difference, but S needs to have it that way.

It is a lot easier to get name conflicts in Fortran names because the name
space is so much more limited (you only have 6 characters to work with), and
all of the names are visible. You merely have to do the best that you can to try
to avoid collisions. In particular, do not use “sort”, S already has three or four.

I often put:

implicit none

statements into Fortran routines (when the compiler accepts it) and then de-
clare all objects explicitly. This can uncover problems that are not otherwise
apparent.

S Poetry c©1998 Patrick J. Burns v1.0

184 CHAPTER 8. C FOR S PROGRAMMERS

S-PLUS has facilities for returning error messages from your Fortran code
called from S. You can learn about the S functions in the xerror.summary help.
You have a choice of two Fortran subroutines—xerror and xerrwv.

Here is exciting code that does important stuff.

subroutine xerrsp(x, n)

implicit none

integer n

double precision x(n)

integer i, m99l, m2l

character*100 m99, m2

real xe

call dblepr(’x values are’, -1, x, n)

m99 = "x value is negative"

m99l = len(m99)

m2 = "r1 is more than 2"

m2l = len(m2)

do i=1, n

if(x(i) .lt. 0.0) then

call xerror(m99, m99l, 99, 1)

endif

if(x(i) .gt. 2.0) then

xe = x(i)

call xerrwv(m2, m2l, 2, 1, 0, 0, 0, 1, xe, 0.0)

endif

end do

return

end

The first four arguments to xerror and xerrwv are the same: a message,
the length of the message, an error number, and an error severity. The xerror
subroutine only has these arguments, but xerrwv has six more to allow you to
print up to two intergers and two real values. The fifth argument is the number
of integers to print—this must be 0,1 or 2. The next two arguments are the
integers. The eighth argument is the number of reals to print, again this must
be 0, 1 or 2. The remaining arguments are the reals to print. You will notice in
the code above that there is a variable to hold the real value to be printed by
xerrwv so that a real is passed in rather than a double precision. Below is
the S function that calls this code.

"fjjxerrsp"<-
function(x)
{

if(!is.loaded(symbol.For("xerrsp")))
poet.dyn.load("xerrsp.o")

S Poetry c©1998 Patrick J. Burns v1.0

8.8. THINGS TO DO 185

xerror.clear()
ans <- .Fortran("xerrsp",

as.double(x),
as.integer(length(x)))[[1]]

if(options()$warn >= 0)
xerror.summary()

ans
}

An example of what happens is:

> fjjxerrsp(-1:3)

x values are

[1] -1 0 1 2 3

recoverable error in...

x value is negative

error number = 99

recoverable error in...

r1 is more than 2

in message above, r1 = 3

error number = 2

error message summary

message start nerr level count

x value is negative 99 1 1

r1 is more than 2 2 1 1

other errors not individually tabulated = 0

[1] -1 0 1 2 3

If you are using Fortran code, then there is going to be an interface between
Fortran and C somewhere since S is written in C. You can push the interface
down into C code that you write. You can call a Fortran routine in C by using
the symbol name rather than just the routine name—C really only cares about
the address of the function. The S.h include file contains macros to get this
right. The other thing to note is that all of the arguments to the Fortran routine
must be pointers. (Fortran only uses pointers, thus it doesn’t need the concept
of “pointer”.) The PORT optimization on page 340 is an example of how to
call Fortran from C.

8.8 Things to Do

Find portions of S functions that would benefit by being coded in C, and do
it. What is the difference in execution speed? How much flexibility are you

S Poetry c©1998 Patrick J. Burns v1.0

186

sacrificing? Can you change it so that you lose less flexibility while retaining
most of the speed improvement?

8.9 Further Reading

The fountainhead of C is Kernighan and Ritchie (1988) The C Programming
Language, 2nd Edition. This is a terse book—perhaps overly so—but care-
fully written. A quite interesting book is Libes (1993) Obfuscated C and Other
Mysteries.

There is a raft of other books on C. One that I happen to have is Darnell
and Margolis (1991) C: A Software Engineering Approach. I make no claims
that this is the best book on C, but it is reasonably good, and it definitely is
not the worst (I think I have that one also).

8.10 Quotations

26Louis Zukofsky “It’s Hard to See but Think of a Sea”
27Robert Francis “By Night”

S Poetry c©1998 Patrick J. Burns v1.0

Chapter 9

S for S Programmers

This chapter covers topics about S that are not explained in the previous chap-
ters. Parts are of less than general interest.

9.1 Databases

When you start S, it looks for a .Data directory to use as the working database.
In general you can think of this as merely holding files that each contain one of
your S objects, where the name of the file and the name of the S object are the
same. However, there are other entities living in .Data directories that may be
of interest. Many of these are alluded to in the section below on utilities.

The help files live in the .Help subdirectory of the .Data. Each object
with help has a corresponding file in .Help. There is also the possibility of a
.Cat.Help subdirectory—see page 193.

The .Audit file is the location where the audit trail of S commands is kept.
It is the .Audit in the working database as a session starts that is used. Once
started, the same audit file is used throughout a session, no matter what the
working database is.

For names that are troublesome for the operating system, the actual file
will be called something like 3 and there is a file called nonfile that is a
dictionary to translate between the S object name and the file name.

DANGER. At least in some versions of S-PLUS, there are occasions when a
file is written with a name like 34352 that is not indexed in the nonfile
file. I’m not sure of the circumstances under which these get created, I’m guess-
ing that it is perhaps when there is some sort of interruption. Sometimes these
objects can be quite large. If you see a suspicious file like this, you can check to
see that it is not listed in nonfile and remove it.

187

188 CHAPTER 9. S FOR S PROGRAMMERS

In recent S-PLUS versions the databases of in-built objects contain one file
that holds all of the objects (called BIG) and a file to index the objects (called
BIGIN). This reduces the amount of memory that the database uses.

9.2 Utilities

When you give the command to start S, you are really starting a Unix script
that does a number of things, one of which is to start the executable (the actual
language), which is called Sqpe. One of the things that this script allows is an
extra argument which is the name of a utility. A utility is an executable that
lives in the cmd subdirectory of SHOME—the utility is executed instead of the S
language.

The BATCH utility is probably the most commonly used. It is invoked like

% S BATCH b.in b.out

where b.in is a file of S commands and b.out is where the results go. If b.out
already exists, the previous contents will be deleted. Note that what I am
writing as S here should be replaced with the command you use to start S.

BATCH jobs are good for running long computations. If you often run several
BATCH jobs on a variety of machines, then starting your input files with

!hostname
date()

can help you keep all of the jobs straight. For instance, if you want to kill one
of the jobs, you can tell which process to kill even if you have more than one
batch job running on the machine in question. I like to put date() at the end
of the file also.

It is frustrating to check a batch job after a weekend and find that it didn’t
do anything because of a typo or other minor error. A partial guard against
this is to perform an S command like:

parse(file="b.in")

where b.in is the name of the input file for the batch job. The result will either
be an expression or an error. It will be syntax errors that are found, such as
missing parentheses. If there is no error, you still don’t know for sure that it will
work—you may need to attach a directory, or may have misspelled a name—but
I often find this check worth the effort. See also my fix for browser.default
on page 138.

S Poetry c©1998 Patrick J. Burns v1.0

9.2. UTILITIES 189

The command

% S SHOME

simply returns the path of where S lives. Though simple, it is very expedient
at times. You can get a sense of all of the utilities available to you by doing:

% ls ‘S SHOME‘/cmd

Not all of the files there are utilities, but many are.

The REPORT utility is probably underutilized. This takes a file that is gen-
erally in a typesetting language like TEX or troff that contains some specially
marked sections of S commands. The result is a different file with the output
resulting from the S commands replacing those commands.

Here is a trivial example. Our (naive) input file (called rep.in) looks like:

% cat rep.in
Harold weighs { jjwt["harold"] } kilograms, but
Dorothy weighs {jjwt["dor"]}.

The S commands are surrouned by braces. The utility is fired up and then we
view the resulting file:

% Splus REPORT rep.in rep.out1
REPORT will run in batch: input from file rep.in,
output on file rep.out1.
% cat rep.out1
S-PLUS : Copyright (c) 1988, 1995 MathSoft, Inc.
S : Copyright AT&T.
Version 3.3 Release 1 for Silicon Graphics Iris,
IRIX 5.2 : 1995
Working data will be in .Data
attaching dotFunctions
Harold weighs harold
15 kilograms, but
Dorothy weighs dorothy
14.

We get two problems in one go. The first problem is that all of the printing
when S-PLUS starts gets put into the output file. The second problem is that
we are getting the names of the quantities that we want as well as the numbers
themselves. What gets put into the output file is everything that S says in
response to the commands, so we need to be a little more careful about our
commands. The cat function comes to the rescue:

S Poetry c©1998 Patrick J. Burns v1.0

190 CHAPTER 9. S FOR S PROGRAMMERS

% cat rep.in2
Harold weighs { cat(jjwt["harold"], "\n", sep="") } kilograms, but
Dorothy weighs {cat(jjwt["dor"], "\n", sep="")}.

Note that the backslash-n in the cat calls is of importance.
The solution to the startup printing is solved with:

% setenv S_SILENT_STARTUP 1
% setenv S_FIRST ’’

The second command is optional, but in my case my .First prints some-
thing, and this command avoids the call to .First. If the commands will need
your .First and it prints something, then you will need to change the .First
or have the S FIRST environment variable do the necessary actions.

% Splus REPORT rep.in2 rep.out2
REPORT will run in batch: input from file rep.in2,
output on file rep.out2.
% cat rep.out2
Harold weighs 15 kilograms, but
Dorothy weighs 14.

Now our output file looks fine.
You may be worrying that TEX files are going to be full of braces, so S is

going to want to evaluate just about the whole file. The solution to this is to
use the -e flag to REPORT. A bare -e means that the introductory brace for S
commands is preceded by a backslash.

% cat rep.in3
Harold weighs \{ cat(jjwt["harold"], "\n", sep="") } kilograms,
but {\it Dorothy weighs \{cat(jjwt["dor"], "\n", sep="")}.}

% Splus REPORT -e rep.in3 rep.out3
REPORT will run in batch: input from file rep.in3,
output on file rep.out3.
% cat rep.out3
Harold weighs 15 kilograms,
but {\it Dorothy weighs 14.}

DANGER. There are occurrences of backslash-{ in TEX files, so this is only
a partial solution. The help file for REPORT states that you can follow the -e
with a character to use in place of the backslash, but that functionality seems
to be broken (at least as of S-PLUS version 3.3 under some Unix systems). A
workaround would be to change the backslash-{ combinations in the file that
are not intended for S to something else, then change them back after S has

S Poetry c©1998 Patrick J. Burns v1.0

9.2. UTILITIES 191

processed the file.

The LOAD utility performs static loading into S. A command with it might
look like:

% S LOAD mycode.o my_other_code.o

If all is well, this will create a file named local.Sqpe in the current directory
that will contain the usual S executable along with the additional code given in
the command.

The script that starts S looks in the current directory for a file named
local.Sqpe. If it exists, then this is used as the S executable. If it doesn’t
exist, then the usual executable is used. The local.Sqpe file is not going to be
small, so you probably don’t want many of them around.

There is more discussion of loading code into S starting on page 171.

A utility added to S-PLUS is COMPILE which is used to compile source files
in a way that makes the resulting object files suitable to be loaded into S. This
is really a call to make. One thing that it does is make sure that the S.h
include file is found.

If COMPILE doesn’t work properly, it is probably because of a problem with
your local installation.

The purpose of the CHAPTER utility is to make it easy to create a library
of S objects. The result of CHAPTER is to create a Makefile that allows easy
updating. There are locations in the Makefile where you put the S dump files
and the help files. Once the Makefile is edited, then you merely need to do:

% make install

and the S objects and help files are all put in the right place. You can redo the
make install command any time that you have added files to the Makefile,
or that you have changed existing dump or help files.

DANGER. The Makefile that CHAPTER creates does not handle objects cre-
ated by data.dump. In the Makefile for the code that goes with this book
that was made by CHAPTER, I have added the target:

install.objs: install.funs
echo "poet.data.restore(unix(’ls $(DDOBJS)’))" | Splus

which is made part of the install target. The DDOBJS variable in my case is
declared to be:

S Poetry c©1998 Patrick J. Burns v1.0

192 CHAPTER 9. S FOR S PROGRAMMERS

DDOBJS=poet.verif.Q portoptgen.ctemplate.Q

These are the objects that the sccs function used data.dump on.

The situation is complicated when C or Fortran code is also involved, but
CHAPTER can ease the pain in this case also.

The S-PLUS utility NM is a convenient way to use the Unix nm command to
examine the symbols in a file of object code. The advantage of Splus NM over
nm is that the former has the same format on all platforms. Here is an example:

% Splus NM digamma.o
digamma.o: U .stret8
digamma.o:00000230 T _digamma_complex_Sp
digamma.o:00000000 T _digamma_real_Sp
digamma.o: U _log
digamma.o: U _set_inf
digamma.o: U _set_na
digamma.o: U _test_inf
digamma.o: U _test_na

The C functions that are defined as static within the file do not appear, but the
other functions do appear and are marked with a “T”, meaning that they are
defined. Symbols marked “U” are not part of the object file, so if this file is to
be loaded into S, then those symbols have to be known to S.

Another S-PLUS utility is HINSTALL (it is undocumented). This installs help
files, and is used like:

% Splus HINSTALL .Data/.Help perl.d transcribe.d

The first argument after HINSTALL is the help directory where the files are to
go. After that an arbitrary number of files can be given that contain help. An
advantage of using HINSTALL is that it automatically takes care of a file that is
for more than one object. Near the top of a help file you will find a line like:

.FN stack

This line says what object the help file is for. To add the print method for
stack to the help file, make it look like:

.FN stack

.FN print.stack

S Poetry c©1998 Patrick J. Burns v1.0

9.2. UTILITIES 193

Mostly this FN command is ignored, but HINSTALL knows about it and does the
right thing. That is, just putting FN lines in the file does nothing to make help
for the additional objects unless you use HINSTALL.

Because version 4 of S changes the way help works, I imagine that HINSTALL
will go extinct.

The category part of the S-PLUS help window system looks for the special
file in each database on the search list that contains the information from the
help files based on the function names, the titles and the keywords. When you
add help files to the .Help subdirectory of a database, then the keywords in the
new help files won’t be recognized until you update the file. Update it with the
command:

% Splus help.findsum .Data

(This utility fell outside of the capitalization convention, you’ll notice.) The
keywords in the help file can not be arbitrary—only a recognized set of keywords
are used. See the list in the help file for prompt. There is also a help.findsum
S-PLUS function that performs the same task as the utility.

The ADDKEYWORD utility is meant to facilitate adding keywords to the list of
acceptable ones. My one attempt at using this utility met with failure. However,
it did usefully point to the file that needs to be changed. It is reasonably obvious
what to do once you find the right file.

The help files in version 3 of S are formatted by the Unix nroff command.
Some machines do not have nroff so S will look in a .Cat.Help directory for

preformatted help files before looking in the .Help directory. You can also use
this if the extra added speed of getting help is worth the extra space taken up.
The CATHELP utility will put the formatted files into the .Cat.Help directory.
It is used like:

% mkdir .Data/.Cat.Help
% Splus CATHELP .Data

S-PLUS has added the MASKED utility that shows objects in the working
database that mask other objects.

% Splus MASKED
Searching user directory .Data ...

S-PLUS also has a masked function, but if things are really messed up, it is
possible that the function won’t do. See page 135 for a discussion of masking.

S Poetry c©1998 Patrick J. Burns v1.0

194 CHAPTER 9. S FOR S PROGRAMMERS

One of the things that S does behind the scenes is to keep an audit file of the
commands given to S. This is used by the history function, can be examined
with the AUDIT utility, and has potential to be used for other purposes also.
(The magic to turn auditing off is given on page 160.) If the audit file grows to
more than a certain size, you will get a message like:

> q()
Warning: Audit file is 519851 characters long.
Run TRUNC_AUDIT to truncate it. See help file for complete

instructions.

This is telling you to run a Unix command like:

% Splus TRUNC_AUDIT
Truncating audit file (.Data/.Audit) to most recent
100000 characters
Audit file truncated to 99913 characters

This saved the most recent part of the file and threw away the older part. You
can give it a number which tells the approximate number of characters to save.
If you want none of the file saved, you would say:

% Splus TRUNC_AUDIT 0

The AUDIT utility provides a means of viewing what an audit file contains.
The default file is the one that would be written to when you start S in the
current directory—that is, the .Audit file that is in the .Data that S will use
as the working directory—but you can specify the file of your choice.

% S AUDIT
Reading audit file ".Data/.Audit"
3652 statements, 352 identifiers
audit: G jjn
.Data/jjn
3463: jjn
3462: jjn[jjn < 0] <- NA
3461: jjn

Above we start up AUDIT and look at the commands that “get” an object named
jjn. Below we view the names that were both put and got (there are a lot, so
the output is abridged):

audit: N GP
rw .Data/jjsy
rw .Data/jjmat
rw .Data/jjv

...

S Poetry c©1998 Patrick J. Burns v1.0

9.3. ZERO LENGTH OBJECTS 195

Perhaps one of the more useful commands is the ability to backtrack a command
number:

audit: B 3463
jjn
~~~~~~~~~
3463: jjn
3462: jjn[jjn < 0] <- NA
3268: jjn <- 1:5

audit: q

Type “q” to exit the AUDIT program.

DANGER. I haven’t ever gotten the E command of AUDIT to work. Perhaps
it does work on some machine, but I haven’t found it.

The LICENSE utility of S-PLUS is primarily for system administration, but
there is one function of general interest. The command

% Splus LICENSE users

produces a list of those currently using S-PLUS licenses. So you can decide who
to harass when you can’t get a license.

Finally two more utilities that may be of interest are EXEC and CSH. The
EXEC utility executes a Unix command in the environment of S, and CSH gives
you a C-shell with the S environment.

% Splus EXEC env

9.3 Zero Length Objects

Objects of zero length are not uncommon in S. They can be unnerving for the
uninitiated, but their existence adds a great deal of versatility to the language.
Should we believe in nothing? 28

Here is a common situation where zero length objects occur.

> jjn <- 1:5
> jjn[jjn < 0]
numeric(0)

S Poetry c©1998 Patrick J. Burns v1.0



196 CHAPTER 9. S FOR S PROGRAMMERS

Even when doing a replacement here, there is no problem.

> jjn[jjn < 0] <- NA
> jjn
[1] 1 2 3 4 5

A source of confusion is the difference between a zero length character vector
and the empty string.

> character()
character(0)
> length(character())
[1] 0
> length("")
[1] 1
> nchar(character())
numeric(0)
> nchar("")
[1] 0

The character() object contains no strings, while "" is one string that has no
characters in it.

Recursive objects can have zero length also:

> list()
list()
> length(list())
[1] 0
> parse(text="")
expression()

An object printed as NULL (mode null) is a special zero length object. An
object that is numeric(0) contains nothing, but if it contained anything, the
elements would be numbers. A NULL object contains nothing, and it is not
specified what it would contain if it did have something. Its vacancy glitters
round us everywhere. 29

A common occurrence of NULL is as the result of the extraction from a list
of a component that doesn’t exist.

> jjlist
$a:
[1] "aaa" "aa"

S Poetry c©1998 Patrick J. Burns v1.0



9.3. ZERO LENGTH OBJECTS 197

$b:
[1] "bb" "bbb"

$c:
[1] "ccc" "ccc"

> jjlist$d
NULL

Though it is often irrelevant, there is a difference between a component that
does not exist and a component whose value is NULL.

> jjlist[2] <- NULL # no change
> jjlist
$a:
[1] "aaa" "aa"

$b:
[1] "bb" "bbb"

$c:
[1] "ccc" "ccc"

> jjlist[2] <- list(NULL) # change component
> jjlist
$a:
[1] "aaa" "aa"

$b:
NULL

$c:
[1] "ccc" "ccc"

> jjlist[[2]] <- NULL # delete component
> jjlist
$a:
[1] "aaa" "aa"

$c:
[1] "ccc" "ccc"

So to remove a component, use double brackets and assign NULL. To change the
value of a component to NULL, use single brackets and a list whose component
is NULL.

S Poetry c©1998 Patrick J. Burns v1.0



198 CHAPTER 9. S FOR S PROGRAMMERS

The fjjcylinder function returns the radius, height and volume of a cylin-
der. Give the function any two of these, and it computes the third.

"fjjcylinder"<-
function(r = ((2 * V)/pi/h)^0.5, h = (2 * V)/pi/r^2, V

= 0.5 * pi * r^2 * h)
{

list(r = r, h = h, V = V)
}
> fjjcylinder(r=1:3, h=3.5)
$r:
[1] 1 2 3

$h:
[1] 3.5

$V:
[1] 5.497787 21.991149 49.480084

> fjjcylinder(h=3.5, V=21:23)
$r:
[1] 1.954410 2.000402 2.045361

$h:
[1] 3.5

$V:
[1] 21 22 23

Obviously if only one argument is given, there has to be some sort of trouble.

> fjjcylinder(r=4)
Error in fjjcylinder(r = 4): Recursive occurrence of

default argument "h"
Dumped

Where we’re caught is when S notices that it is being asked to resolve a circular
reference. Now we look at the state of the objects at the time of the error.

> debugger()
Message: Recursive occurrence of default argument "h"

1:
2: fjjcylinder(r = 4)
Selection: 2
Frame of fjjcylinder(r = 4)
d(2)> ?

S Poetry c©1998 Patrick J. Burns v1.0



9.3. ZERO LENGTH OBJECTS 199

1: V
2: h
3: r
d(2)> mode(r)
[1] "numeric"
d(2)> mode(h)
[1] "unknown"
d(2)> mode(V)
[1] "unknown"
d(2)> missing(r)
[1] F
d(2)> missing(h)
[1] T
d(2)> missing(V)
[1] T

Note that not all versions of S (or S-PLUS) will give you the same answers in
this example.

There are really two senses of what a missing object is. The first and most
proper is that it is an object that corresponds to an argument of a function that
was not given in the call. For example, the call fjjcylinder(r=4) means that
h and V will be missing.

The second sense is that “missing” means an object of mode missing. Here
is a little test case:

> fjjtestmiss1
function(x, y, z)
{

ans <- logical(3)
names(ans) <- c("x", "y", "z")
ans2 <- ans
ans["x"] <- missing(x)
ans["y"] <- missing(y)
ans["z"] <- missing(z)
mode(y) <- "missing"
ans2["x"] <- missing(x)
ans2["y"] <- missing(y)
ans2["z"] <- missing(z)
list(before = ans, after = ans2, call =

match.call())
}
> fjjtestmiss1(1,2)
$before:
x y z
F F T

S Poetry c©1998 Patrick J. Burns v1.0



200 CHAPTER 9. S FOR S PROGRAMMERS

$after:
x y z
F T T

$call:
fjjtestmiss1(x = 1, y = 2)

> fjjtestmiss1()
Error in fjjtestmiss1: Argument "y" is missing, with no

default: fjjtestmiss1()
Dumped

So you can not make a missing argument missing. The proper approach is:

> fjjtestmiss2
function(x, y, z)
{

ans <- logical(3)
names(ans) <- c("x", "y", "z")
ans2 <- ans
ans["x"] <- missing(x)
ans["y"] <- missing(y)
ans["z"] <- missing(z)
if(!missing(y))

mode(y) <- "missing"
ans2["x"] <- missing(x)
ans2["y"] <- missing(y)
ans2["z"] <- missing(z)
list(before = ans, after = ans2, call =

match.call())
}

I’m not sure why you would ever want to do such a thing, but it appeals to my
sense of irony.

A mode of unknown means that S is left confused about the situation, as in
the fjjcylinder(r=4) call where V can’t be computed. Nobody knew where I
was and now I am no longer there. 30

There is a way to make a constraint-based function like fjjcylinder behave
better.

"cylinder"<-
function(r = ((2 * V)/pi/h)^0.5, h = (2 * V)/pi/r^2, V

= 0.5 * pi * r^2 * h)
{

if(nargs() != 2)

S Poetry c©1998 Patrick J. Burns v1.0



9.4. MODES 201

stop("must give exactly two arguments"
)

list(r = r, h = h, V = V)
}

The nargs function returns the number of arguments that are actually passed
into the call for the function it is in. We know in this case that we need exactly
two arguments. We could allow all three arguments to be given, and perform
some sort of adjustment to make the three quantities follow the constraint.

> cylinder(r=4)
Error in cylinder(r = 4): must give exactly two arguments
Dumped

This is a more rational error message than that from fjjcylinder.

9.4 Modes

There are numerous modes, each producing a different type of object. The
modes are divided into three categories: atomic, recursive and language. Atomic
(which includes mode null as well as those given in chapter 1) does not overlap
with the other two categories. Recursive objects may contain other objects of
the same mode. Some language objects are recursive.

Although not a mode, “structures” are a way that objects are described.
The structure function has a .Data argument and takes an arbitrary number
of additional arguments. These additional arguments are the attributes of the
object. Here are some examples:

> dput(1:4)
c(1, 2, 3, 4)
> jjstruc <- 1:4
> class(jjstruc) <- "whim"
> dput(jjstruc)
structure(.Data = c(1, 2, 3, 4), class = "whim")
> jjmat <- matrix(1:4, 2)
> dput(jjmat)
structure(.Data = c(1, 2, 3, 4), .Dim = c(2, 2))
> attributes(jjmat)
$dim:
[1] 2 2

> jjmat2 <- 1:4
> attr(jjmat2, ".Dim") _ c(2,2)
> jjmat2

S Poetry c©1998 Patrick J. Burns v1.0



202 CHAPTER 9. S FOR S PROGRAMMERS

[,1] [,2]
[1,] 1 3
[2,] 2 4

So .Dim is another name for the dim attribute (due I’m sure to some sort of
historical aberration). By the way, the dput function is what does the real work
in the dump function.

S functions are objects of mode function. S thinks the length of a function
is the number of arguments plus one. The extra “component” is the body of
the function. The names of a function are the names of the arguments, the
body is not named. Since the default of an argument to a function can be a
function, functions are recursive. In common usage, as on page 25, the length
of a function is the number of lines contained in the body of the function.

A special type of function is an assignment function. These are functions
that appear on the “wrong” side of an assignment, for example:

dim(x) <- c(4, 6)

The assignment function in this case has the (invalid) name of dim<-. As-
signment functions have their own protocol to follow—see the explanation of
names<-.rationalnum on page 248.

Using an assignment function may cause a local version of the object to be
created. When you are at the S prompt, then the local version will be in the
working database.

> find("freeny.x")
[1] "/usr/lang/s3.1/s/.Datasets"
> dim(freeny.x) <- c(13, 12)
Warning messages:

Invalid dimnames deleted in: dim(freeny.x) <- c(13, 12)
> find("freeny.x")
[1] ".Data" "/usr/lang/s3.1/s/.Datasets"

When in a function, then the new copy will be in the frame of the function.
Examples of this are in fjjlog2 on page 220, and loan on page 226.

Objects of mode expression are (the equivalent of) parsed commands.
This is a recursive mode since expressions can contain expressions.

Mode call represents objects that are calls to a function. The first compo-
nent of a call is the name (mode name) of the function being called. The rest
of the call is the arguments given.

> length(expression(sin(1:4)))

S Poetry c©1998 Patrick J. Burns v1.0



9.4. MODES 203

[1] 1
> mode(expression(sin(1:4))[[1]])
[1] "call"
> expression(sin(1:4))[[1]][[1]]
sin
> mode(expression(sin(1:4))[[1]][[1]])
[1] "name"
> expression(sin(1:4))[[1]][[2]]
1:4
> mode(expression(sin(1:4))[[1]][[2]])
[1] "call"
> mode(expression(sin(1:4))[[c(1,2,2)]])
[1] "numeric"

Here we see an example of a type of subscripting that was promised in chapter
1. The command

x[[c(1,2,2)]]

is equivalent to

x[[1]][[2]][[2]]

Working with language constructs is one of the more likely spots where this
form of subscripting is useful. The portoptgen function on page 348 uses it
extensively to build an S function. Another equivalent form is:

x[[list(1,2,2)]]

This allows a mixture of numeric and character subscripts.

Formulas use the tilde operator. This operator is particularly lazy—it does
nothing but return a call to itself. This seems like either a contradiction or an
infinite loop, but it works nonetheless. It preserves what was typed while being
in a form that can be taken apart and manipulated.

> jjform <- y ~ x1 + x2
> mode(jjform)
[1] "call"
> is.recursive(jjform)
[1] T
> is.language(jjform)
[1] T
> jjform[[1]]
~
> jjform[[2]]
y

S Poetry c©1998 Patrick J. Burns v1.0



204 CHAPTER 9. S FOR S PROGRAMMERS

> jjform[[3]][[2]]
x1
> jjform[[c(3,2)]]
x1

See the chapter on formulas for more.
Something of mode name is in the crack between the character string that

names an object, and the object itself. To stand in the doorway is to stand in
more brief worlds than this one 31

> jjform[[2]] <- as.name("z")
> jjform
z ~ x1 + x2

> jjln <- list(a=0, b=as.name("freeny.y"))
> jjln
$a:
[1] 0

$b:
freeny.y

> jjln$b
freeny.y
> eval(jjln$b)

1Q 2Q 3Q 4Q
1962: 8.79236 8.79137 8.81486
1963: 8.81301 8.90751 8.93673 8.96161
1964: 8.96044 9.00868 9.03049 9.06906
1965: 9.05871 9.10698 9.12685 9.17096
1966: 9.18665 9.23823 9.26487 9.28436
1967: 9.31378 9.35025 9.35835 9.39767
1968: 9.42150 9.44223 9.48721 9.52374
1969: 9.53980 9.58123 9.60048 9.64496
1970: 9.64390 9.69405 9.69958 9.68683
1971: 9.71774 9.74924 9.77536 9.79424

Names are elusive because they are almost always evaluated.

There are several modes that control flow within the language. These modes
include: if, for, while, repeat, return, break, and next.

> jjif <- expression(if(x>0) y else z)[[1]]
> jjif
if(x > 0) y else z
> mode(jjif)

S Poetry c©1998 Patrick J. Burns v1.0



9.4. MODES 205

[1] "if"
> length(jjif)
[1] 3
> is.recursive(jjif)
[1] T
> is.language(jjif)
[1] T
> jjif[[1]]
x > 0
> mode(jjif[[1]])
[1] "call"

So an if object has length 3 (2 when the “else” is missing) and each piece is
usually some other language object. Here we see how an if without an else
works:

> rm(jj, jjx)
> jj <- 1
> jjx <- if(jj == 0) 3
> jjx
NULL
> rm(jjx)
> if(jj == 0) jjx <- 3
NULL
> jjx
Error: Object "jjx" not found

The value of the else clause when it is missing is NULL. In the second statement
above the assignment to jjx is not made so it doesn’t exist rather than having
the value NULL as in the first statement.

> jjbrk <- vector("break")
> jjbrk
break
> is.recursive(jjbrk)
[1] F
> is.atomic(jjbrk)
[1] F
> is.language(jjbrk)
[1] T
> length(jjbrk)
[1] 0

So an object of mode break is neither recursive nor atomic.
See the find.assign function on page 211 for a couple additional modes,

and to see language modes in action.

S Poetry c©1998 Patrick J. Burns v1.0



206 CHAPTER 9. S FOR S PROGRAMMERS

9.5 Evaluation

The first step S takes in order to perform a command is to parse it. This is
the process of breaking the command into units of known type. Consider the
pseudo-English sentence “The wugbun was quentled in the nebrad pebfin.” We
parse this by realizing that “wugbun” is a noun and the subject of the sentence;
“quentled” is a verb in the past tense of the passive voice; “nebrad” is an
adjective modifying “pebfin” which is a noun and the object of the preposition
“in.” We don’t know what these words mean, but that doesn’t hinder us from
understanding the form of the sentence. Learning what the words mean and
then understanding the sentence would be analogous to evaluation in S. I can’t
blab such blither blubber. 32

When S parses a statement, it looks at each character in turn and tries to
make sense of it. If it sees ! as the first character, then it interprets this as an
escape to the operating system, but if it sees it only later in a statement, then it
tries to fit it into one of the operators != or ! (meaning “not”). S decides what
are numbers and what are object names. If at some point, the parser can’t fit
a character in sensibly, then a syntax error results. Here are two statements:

f (a, b)
f + (a, b)

They are exactly alike except for the third character. The first statement will
parse fine. The second statement will parse okay through the “a”, but when it
hits the comma, it realizes there is a problem—the parenthesis can’t be thought
of as the start of an argument list because of the + operator, and argument
separation is the only use in S that a comma has.

> parse(text="f + (a, b)")
Syntax error: "," used illegally at this point:
f + (a,
Dumped

There is no problem making objects with new names, but the parser would
not understand it if you tried to create new operators at whim. You can not
add, say, ++ as a new operator because that would change the syntax of the
language.

> ++2
[1] 2
> +-++2
[1] -2
> 3//5
Syntax error: */ ("/") used illegally at this point:
3//

S Poetry c©1998 Patrick J. Burns v1.0



9.5. EVALUATION 207

Using ++ in S does parse—it is interpreted as two unary plus signs in a row.
There is no interpretation for something like // so a syntax error results.

However, S provides a way to add new operators, but the name of the oper-
ator must begin and end in %. Here is a list of all such operators from S-PLUS
version 3.3.

> find.objects("%")
$SHOME/s/.Functions $SHOME/splus/.Functions
"%%" "%*%"
$SHOME/splus/.Functions $SHOME/s/.Functions
"%*%.default" "%/%"
$SHOME/s/.Functions
"%o%"

The %*% function is generic with only a default method appearing here.
The characters that appear inside the % symbols are quite arbitrary. The

following operator even contains a pound sign that elsewhere would signal the
start of a comment. (Quotes are not allowed.)

> "%@#&*#%" <- function(e1, e2) rpois(e1, e2)
> 3 %@#&*#% 5
[1] 3 5 2

Below is the definition of an “element of” operator that might be of use at times.

> "%e%" <- function(x,y) match(x, y, nomatch=0) > 0
> c(-1, 34, 2) %e% 1:10
[1] F F T
> 1:10 %e% c(-1, 34, 2)
[1] F T F F F F F F F F

Statisticians looking at the list of operators may be wondering why %in%
that is used in analysis of variance formulas is not listed. The functionality is
there:

> raov(Moisture ~ Batch + Sample %in% Batch, pigment)
Call:

raov(formula = Moisture ~ Batch + Sample %in% Batch,
data = pigment)

Terms:
Batch Sample %in% Batch Residuals

Sum of Squares 1210.933 869.750 27.500
Deg. of Freedom 14 15 30

S Poetry c©1998 Patrick J. Burns v1.0



208 CHAPTER 9. S FOR S PROGRAMMERS

Residual standard error: 0.9574271
Estimated effects are balanced

The %in% is not really a function, likewise the + in the formula is not really
addition. Formulas use S parsing (so the precedence in formulas is the same as
in S commands), but the formulas are not evaluated in S.

In the evaluation process, S creates a memory frame (also called an evalua-
tion frame) for each function call as it is evaluated. Actually, since this is the
chapter where I’m promising to tell the truth, I have to state that there are
“quick calls” (which are .Internal functions satisfying certain conditions) that
do not get their own frame. We Thin gin. We Jazz June. 33

As a function is evaluated, functions called within that function need to be
evaluated, and functions within those functions need to be evaluated, and so
on. Hence there is a stack of memory frames that grows and shrinks throughout
the evaluation. Each of the frames has a unique number which gives the depth
it is in the stack.

Below are some examples of frames shown by traceback from a call to
browser. The function called on the command line will be:

> fjj4
function(x, add.new = F, exp.use = F)
{

char.logic <- paste(add.new, exp.use, sep =
".")

switch(char.logic,
FALSE.FALSE = log(fjjb(x) + 3),
FALSE.TRUE = exp(fjjb(x) + 3),
TRUE.FALSE = log(fjjb(x) %+% 3),
TRUE.TRUE = exp(fjjb(x) %+% 3))

}

CODE NOTE. The char.logic variable provides a mechanism for flattening
out a messy nest of “if-else”s. In this case where it is only two deep, it is perhaps
a little gratuitous, but with more nesting, it can be very aesthetic, especially if
a portion of code corresponds to more than one case.

Functions used by fjj4 include:

> fjjb
function(x, y = 2)
{

browser()
x + y

}
> get("%+%")

S Poetry c©1998 Patrick J. Burns v1.0



9.5. EVALUATION 209

function(e1, e2)
{

.Internal(e1 + e2, "do_op", T, 5)
}

The %+% operator is the same as the + operator except that the former has
braces around the call to .Internal.

> fjj4(5)
Called from: fjjb(x)
b(4)> traceback()
7: eval(i, eval.frame, parent) from 6
6: browser.default(nframe, message = paste("Called from:", from 5
5: browser() from 4
4: fjjb(x) from 2
3: log(fjjb(x) + 3) from 2
2: fjj4(5) from 1
1: from 1
b(4)> 0
[1] 2.302585
> fjj4(5, add=T)
Called from: fjjb(x)
b(5)> traceback()
8: eval(i, eval.frame, parent) from 7
7: browser.default(nframe, message = paste("Called from:", from 6
6: browser() from 5
5: fjjb(x) from 2
4: fjjb(x) %+% 3 from 2
3: log(fjjb(x) %+% 3) from 2
2: fjj4(5, add = T) from 1
1: from 1
b(5)> 0
[1] 2.302585
> fjj4(5, T, T)
Called from: fjjb(x)
b(4)> traceback()
7: eval(i, eval.frame, parent) from 6
6: browser.default(nframe, message = paste("Called from:", from 5
5: browser() from 4
4: fjjb(x) from 2
3: fjjb(x) %+% 3 from 2
2: fjj4(5, T, T) from 1
1: from 1
b(4)> 0
[1] 22026.47

S Poetry c©1998 Patrick J. Burns v1.0



210 CHAPTER 9. S FOR S PROGRAMMERS

From these tracebacks we can infer that exp and + are quick calls while log and
%+% are not. When log is used, there is a frame corresponding to it, but there
is never a frame for exp.

The number after the “from” gives the frame number of the parent of each
frame. Frame 1 has the curious property of being its own parent.

When S looks for a an object, it looks in a number of places until it finds an
object that satisfies the requirements. Often S knows that it needs a function
so it will ignore objects with the same name that are not functions (it gives a
warning if this happens). The places searched are:

• The first place S looks is the current frame.

• The second place where it looks is a funny critter called frame 1. Frame 1 is
best explained as lasting from the start of a command being evaluated until the
prompt returns. Note that not all frames are searched.

• The third place to look is database 0, also referred to as frame 0, the session
database or the session frame—so many names for one place. Database 0 starts
when an S session starts and dies when S is exited.

• Finally each database on the search list is searched in turn.

• If the object is not found in any of these places, then an error occurs.

Frame 1 is generally underused. When a variable needs to be global, this is
almost always the location where it should be put. You want the variable to
live only as long as required. If it will only be used during a function call, then
it should go into frame 1. If it needs to outlive a single function call, but can be
logically or conveniently recreated each session, then it should go into database
0. Only when the variable needs to live beyond a single session, should it go
into the working database.

The whence function returns the location where an object is found. It first
looks for the appropriate object in the memory frame of interest, then in frame
1, then in database 0, then on the search list. A negative return value means
that the object is found in a frame.

"whence"<-
function(x, mode. = "any", offset = 0)
{

if(!is.character(x) || length(x) != 1)
stop("need single character string for x")

parent <- sys.parent() - offset
if(exists(x, mode = mode., frame = parent))

return( - parent)
if(exists(x, mode = mode., frame = 1))

S Poetry c©1998 Patrick J. Burns v1.0



9.5. EVALUATION 211

return(-1)
if(exists(x, mode = mode., frame = 0))

return(0)
find(x, mode = mode., numeric = T)[1]

}

The whence function is used on page 228 in the [.stack function.

The find.assign function takes an expression and attempts to return all
of the variables that are assigned to in the expression.

"find.assign"<-

function(line)

{

switch(mode(line),

"<-" = ,

"<<-" = {

ans <- line[[1]]

if(mode(ans) == "call")

return(character(0))

else if(mode(line[[2]]) == "function") {

this.fun <- line[[2]]

return(c(ans, names(this.fun)[ - length(

this.fun)], Recall(this.fun[[length(this.fun)

]])))

}

else if(mode(line[[2]]) == "<-" || mode(line[[2]]) ==

"<<-") {

return(c(ans, Recall(line[[2]])))

}

else return(as.character(ans))

}

,

comment.expression = return(Recall(line[[1]])),

"{" = {

ans <- character(0)

for(i in 1:length(line)) {

ans <- c(ans, Recall(line[[i]]))

}

return(ans)

}

,

"if" = return(c(Recall(line[[1]]), Recall(line[[2]]), Recall(

line[[3]]))),

"while" = {

return(c(Recall(line[[1]]), Recall(line[[2]])))

}

,

"for" = {

S Poetry c©1998 Patrick J. Burns v1.0



212 CHAPTER 9. S FOR S PROGRAMMERS

loopv <- substring(deparse(line)[1], 5)

loopv <- substring(loopv, 1, match(32, AsciiToInt(loopv

)) - 1)

return(c(loopv, Recall(line[[3]])))

}

,

"repeat" = return(Recall(line[[1]])),

call = {

cnam <- as.character(line[[1]])

switch(cnam,

assign = return(line[[2]]),

switch = {

ans <- character(0)

for(i in 2:length(line)) {

ans <- c(ans, Recall(line[[i]]))

}

return(ans)

}

,

return(character(0)))

}

)

}

The basic idea of this function is dead simple—switch on the mode of the
output, then recurse on pieces of the input using Recall (see page 239 for further
explanation of Recall and recursion). The details can get a little messy, though.

Although writing find.assign is a fine exercise to understand S, its real
purpose is as a subfunction to global.vars which attempts to return the vari-
ables that are global to a function. A mistake that is easy to make is to use a
different name in the body of a function than in the argument list for the same
variable. For example:

> global.vars(function(xmat) symsqrt(x))
[1] "x"

This makes the misspelled name in the body a global variable. The situation
is particularly dangerous when there is an object of that name on the search
list—possibly created for debugging purposes. The global.vars function is an
attempt to have a diagnostic for this.

"global.vars"<-
function(fun)
{

if(is.character(fun))
fun <- get(fun)

fnam <- names(fun)
fnam <- fnam[ - length(fnam)]

S Poetry c©1998 Patrick J. Burns v1.0



9.5. EVALUATION 213

allv <- all.vars(fun, uniq = T)
allv <- allv[!match(allv, c("NA", "T", "F",

"Inf", "NULL", ".Internal", fnam),
nomatch = 0)]

body <- fun[[length(fun)]]
if(mode(body) == "{") {

anam <- character(0)
for(i in 1:length(body)) {

anam <- c(anam, find.assign(
body[[i]]))

}
}
else anam <- character(0)
if(length(anam))

allv <- allv[ - match(anam, allv,
nomatch = 0)]

allv
}

The all.vars function returns a vector of all of the variables in an expression,
in this case we want just the unique names rather than each occurence of a name.
Next we get rid of the common names we know are wrong and the argument
names. Finally we get rid of the names that are assigned to in the body of the
function.

If you’ve been paying attention you should be a little concerned about this
last move—on page 72 I said there was a problem with subscripting with nega-
tive numbers from match. But given the protection for the length of anam, there
will be at least one match if that line of code is reached, so it should be fine.

S uses lazy evaluation. This means that arguments to functions are eval-
uated only when they are actually needed. Being used by another function
doesn’t count—the object is passed into the call unevaluated. Once the value
is needed, it is evaluated in the appropriate frame and the value is effectively
passed to all of the intermediate frames. An advantage of lazy evaluation is
that unnecessary evaluation is avoided. Another is that the default to an argu-
ment can involve variables created inside the function as long as the variables
exist by the time that the argument is needed. The down-side is that in certain
situations there are problems with knowing where the evaluation should take
place. The most common way to get this problem is when using formulas in-
side of functions—see page 291. The delay.eval function on page 217 slightly
illuminates lazy evaluation.

S is essentially a functional language, which means that variables in one
function are not changed by functions called by the function. That is, side
effects are minimized, and generally only occur in a limited set of circumstances.

S Poetry c©1998 Patrick J. Burns v1.0



214 CHAPTER 9. S FOR S PROGRAMMERS

Actually, it is possible with the assign function to change objects in other
frames (one reason why S is not strictly a functional language).

When objects are assigned to databases, they are not actually written to
the disk until just before S gives another prompt. The assignments are said not
to be committed until the prompt is given. For the most part, this is of no
concern, but there are times when it matters. Instances where it does matter
include large, repetitive computations (page 355), and browser calls (page 138).
The immediate argument to assign insures that the commitment is made at
the time of evaluation rather than held until later. See also the discussion of
synchronize on page 103.

There is a number of functions that provide information on the stack of
memory frames at a given moment. Here is a list of them:

> objects(5, pat="^sys")
[1] "sys.call" "sys.calls" "sys.frame"
[4] "sys.frames" "sys.function" "sys.nframe"
[7] "sys.on.exit" "sys.parent" "sys.parents"
[10] "sys.status" "sys.trace"

We can use the fjj4 function again to explore what some of these functions
do.

> fjj4(6)
Called from: fjjb(x)
b(4)> traceback()
7: eval(i, eval.frame, parent) from 6
6: browser.default(nframe, message = paste("Called from:", from 5
5: browser() from 4
4: fjjb(x) from 2
3: log(fjjb(x) + 3) from 2
2: fjj4(6) from 1
1: from 1
b(4)> sys.nframe()
[1] 4
b(4)> sys.parent()
[1] 2

Although it is a little confusing with the browser complicating things, we get
the answer that we are in frame number 4 and the parent to frame 4 is frame
2.

b(4)> sys.call()
fjjb(x)
b(4)> sys.frame()

S Poetry c©1998 Patrick J. Burns v1.0



9.5. EVALUATION 215

$.Auto.print:
[1] T

$x:
.Argument(x, x = )

$y:
.Argument(, y = 2)

b(4)> sys.function()
function(x, y = 2)
{

browser()
x + y

}

The .Argument (which is a mode) objects are unevaluated arguments to the
function.

b(4)> sys.parents()
[1] 1 1 2 2 4 5 6 4

sys.call is a close synonym of match.call. Either of them can be used to pro-
duce the call component or attribute of the results of functions. The difference
is that match.call always gives the argument name:

> fjj5
function(x)
{

match.call()
}
> fjj6
function(x)
{

sys.call()
}
> fjj5(y ~ x+z)
fjj5(x = y ~ x + z)
> fjj6(y ~ x+z)
fjj6(y ~ x + z)

The ignore.error function allows a value to be given to a computation
that produces an error, and the computation continues. This function provides
an example of how to control evaluation as well as introducing the restart
function.

S Poetry c©1998 Patrick J. Burns v1.0



216 CHAPTER 9. S FOR S PROGRAMMERS

"ignore.error"<-
function(call, value = NULL)
{

nframe <- sys.nframe()
flag <- paste("flag.ignorE.error", nframe, sep = ".")
if(exists(flag, frame = 1) && get(flag, frame = 1)) {

assign(flag, F, frame = 1)
cat("(ignored)\n", file = "|stderr")
return(value)

}
else assign(flag, T, frame = 1)
restart(T)
ans <- eval(call, nframe - 1)
assign(flag, F, frame = 1)
ans

}

Let’s go through the execution of this function. We start by finding where we
are in the stack of frames. Next the variable name for the flag is created—the
funny capitalization helps to avoid name conflicts, but the important part is the
frame number in case ignore.error is called in more than one level. If the flag
exists and is TRUE, then the flag is changed to FALSE, the error message is
appended, and the function exits with the return value. Otherwise the flag is
assigned to be TRUE, and restart is called so that evaluation will resume after
an error. Now finally, the actual statement of interest is evaluated in the proper
frame. If no error occurs, then evaluation within ignore.error continues—the
flag is turned to FALSE and the result is returned. If an error does occur, then
the restart causes evaluation to resume at the beginning of the ignore.error
call which means that the condition in the if will be TRUE. Note that you
may be in for a wild ride if you use a function containing restart that is not
properly debugged.

Below is a function that uses ignore.error and an example of its use. When
ignore.error is used, it is reasonable to set the error option to NULL to save
time.

"fjjigerr"<-
function(input)
{

this.mat <- base.mat <- matrix(c(2, 1, 1, 1),
2)

lin <- length(input)
ans <- array(NA, c(lin, 2), list(input, NULL))
for(i in 1:lin) {

this.mat[4] <- base.mat[4]/input[i]
ans[i, ] <- ignore.error(eigen(

this.mat)$val, NA)

S Poetry c©1998 Patrick J. Burns v1.0



9.5. EVALUATION 217

}
ans

}
> fjjigerr(-2:1)
Error in eigen.default(this.mat): missing or infinite

values in x
Dumped
(ignored)

[,1] [,2]
-2 2.350781 -0.8507811
-1 2.302776 -1.3027756
0 NA NA
1 2.618034 0.3819660

The for loop in fjjigerr uses 1:lin where lin is length(input). There is no
assurance that input will have a length, so the loop might fail—see page 128.
In this case it isn’t tragic since it is just a temporary function, and it will fail
on array anyway. However, it is good to keep these things in mind for when
they do count.

The delay.eval function plays on lazy evaluation to allow evaluation to be
performed in a different memory frame than usual.

"delay.eval"<-
function(expr, frames = 1)
{

eval(substitute(expr), local = sys.parent() + frames)
}

For example, the default value for ncol.arg in diag.default is n. The n is
local to diag.default and not part of the environment of the frame calling
diag.default. We can use the n inside a call to delay.eval though.

> args(diag.default)
function(x = 1, nrow.arg, ncol.arg = n)
NULL

> diag(1, nrow=3, ncol=2*n)
Error: Object "n" not found
Dumped

> diag(1, nrow=3, ncol=delay.eval(2*n))
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0
[2,] 0 1 0 0 0 0
[3,] 0 0 1 0 0 0

S Poetry c©1998 Patrick J. Burns v1.0



218 CHAPTER 9. S FOR S PROGRAMMERS

The unabbrev.value function is meant to allow an abbreviated function
argument. That is, the argument can be one of a few strings that would need
to be given in full without some mechanism like this.

"unabbrev.value"<-
function(x, choices)
{

err <- F
if(!is.character(x) || length(x) != 1) {

err <- T
emsg <- paste("need single character string for",

deparse(substitute(x)))
}
else {

xnum <- pmatch(x, choices, nomatch = 0
)

if(xnum == 0) {
err <- T
emsg <- paste(

"unknown or ambiguous choice for ",
deparse(substitute(x)),
": ", x, sep = "")

}
}
if(err) {

eval(call("stop", emsg), local =
sys.parent())

}
else choices[xnum]

}

A particular feature of this function is that the error message contained in
emsg—if err is TRUE—will come from the function with the argument, not
from unabbrev.value.

An example of the use of this function is in line.integral on page 320.

The .Internal function calls C code that is specially written to understand
S. You can not write your own .Internal functions, and you can not have
access to the code that they use. However, a brief explanation of a .Internal
call might help you sometime. Here is an example:

> get("*")
function(e1, e2)
.Internal(e1 * e2, "do_op", T, 4)

The .Internal function has four arguments. The first argument is an image
of how the call must have looked, with appropriate substitutions made. S uses

S Poetry c©1998 Patrick J. Burns v1.0



9.5. EVALUATION 219

this image internally—it is more than cosmetic. The second argument names
the section of internal S code that is to be used, and the fourth argument is
the specific part of that section that is to be used. For example, the * function
uses case 4 of the do op code. The second argument is of significance relative to
the groups of the object-oriented programming. The third argument is a logical
value which states whether the arguments are to be evaluated or not. One might
think that arguments should always be evaluated, but then one would be wrong.

Options are implemented by using the .Options object that lives in database
0. This is a logical place for it since it must have persistence, but it is easily
created and modified appropriately as S starts up. The .Options object is a
named list where the name is the option and the component is the value of the
option. For almost all purposes, you should only change options through the
options function (or a modification like soptions given on page 45). If this
were always the case, then there would be no reason to care how options are
implemented. However there are a few occasions where finesse is desirable.

Here is a revision of the log function so that a warning is not given when
negative numbers are given to it.

> fjjlog1
function(...)
{

on.exit(options(old.opt))
old.opt <- options(warn = -1)
log(...)

}

Now we test that it works and time it relative to the original.

> fjjlog1(-4:4)
[1] NA NA NA NA -Inf
[6] 0.0000000 0.6931472 1.0986123 1.3862944
> unix.time(for(i in 1:1000) fjjlog1(-4:4))
[1] 101.42 2.39 106.00 0.00 0.00
> unix.time(for(i in 1:1000) log(-4:4))
[1] 0.94000244 0.01999998 1.00000000 0.00000000
[5] 0.00000000
There were 50 warnings (use warnings() to see them)

If we had to put up with this much loss of speed, then we might well be happier
with the warnings. (Note there were really 1000 warnings, but S saved only the
first 50 of them.) But a different revision performs much better:

> unix.time(for(i in 1:1000) fjjlog2(-4:4))
[1] 3.22000122 0.02999973 3.00000000 0.00000000
[5] 0.00000000

S Poetry c©1998 Patrick J. Burns v1.0



220 CHAPTER 9. S FOR S PROGRAMMERS

The revised function is:

> fjjlog2
function(...)
{

.Options$warn <- -1
log(...)

}

This creates a local version of .Options with the change to warn. The new
version of the .Options object is created due to the action of the $<- function.
There is no need of on.exit because the local version will die when fjjlog2
exits.

When you type the name of an object at an S prompt, the object is printed.
A simple and logical idea, but it is a little bit complicated to implement because
not everything is printed. There is a special object named .Auto.print that
controls automatic printing. Suppose that we want to time a statement:

> unix.time(mean(rnorm(100)))
[1] 0.00999999 0.00999999 0.00000000 0.00000000 0.00000000

The statement above gives us the timing, but we don’t get to see the result of
the computation. We need a call to print around the statement being timed
in order to see its result:

> unix.time(print(mean(rnorm(100))))
[1] 0.02105694

Now we see the result of the statement, but not the timing. The reason is that
the last statement of print methods is invisible(x) so that the object being
printed is returned but there can’t be an infinite loop of printing. That call
to invisible has set .Auto.print in frame 1 to FALSE so at the point that
unix.time exits, automatic printing is not in effect. To see both results, we
need two calls to print:

> print(unix.time(print(mean(rnorm(100)))))
[1] 0.2123258
[1] 0.00999999 0.00000000 0.00000000 0.00000000 0.00000000

Here is the definition of the interlude function whose use was explained on
page 59.

"interlude"<-

function(x)

{

S Poetry c©1998 Patrick J. Burns v1.0



9.5. EVALUATION 221

if(!is.character(x))

x <- deparse(substitute(x))

if(exists(".Interlude", where = 0))

ilist <- get(".Interlude", where = 0)

else {

ilist <- list(0)

class(ilist) <- "interlude"

}

onelist <- list(total.time = rep(0, 5), ncalls = 0)

iexpr <- expression(NULL, on.exit({

.interludE.final <- proc.time()

if(length(.interludE.init) == 3)

.interludE.init <- c(.interludE.init, 0, 0)

if(length(.interludE.final) == 3)

.interludE.final <- c(.interludE.final, 0, 0)

.interludE.list <- get(".Interlude", where = 0)

.interludE.thisl <- .interludE.list[[.interludE.name]]

.interludE.thisl$total.time <- .interludE.thisl$total.time + (

.interludE.final - .interludE.init)

.interludE.thisl$ncalls <- .interludE.thisl$ncalls + 1

.interludE.list[[.interludE.name]] <- .interludE.thisl

assign(".Interlude", .interludE.list, where = 0)

}

), .interludE.init <- proc.time(), NULL)

mode(iexpr) <- "{"

lenex <- length(iexpr)

makefun <- rep(T, length(x))

names(makefun) <- x

if(length(old <- intersect(names(ilist), x)))

makefun[old] <- F

for(i in x) {

ilist[[i]] <- onelist

if(makefun[i]) {

thisfun <- get(i)

thisn <- length(thisfun)

thisbody <- iexpr

thisbody[[1]] <- substitute(.interludE.name <- iname,

list(iname = i))

thisbody[[lenex]] <- thisfun[[thisn]]

thisfun[[thisn]] <- thisbody

assign(i, thisfun, where = 0)

}

}

assign(".Interlude", ilist, where = 0)

}

Let’s start at the bottom and work towards the top. The last thing that
interlude does is to assign .Interlude to the session database. This object is
a list in which each component holds the time and number of calls for each of
the functions being profiled.

S Poetry c©1998 Patrick J. Burns v1.0



222 CHAPTER 9. S FOR S PROGRAMMERS

Now look at the for loop—this loops over each function to be profiled. The
first thing is to initialize the proper component of the list that will become
.Interlude. The next thing to do is to modify the function to be profiled if
necessary and assign the modified function to the session database.

Modifying the existing function is done by creating an object of mode “brace”,
then filling this object in with the name of the function being modified, and with
the body of the real function (remember that the last component of a function
is its body—the previous components are its arguments).

Here is an example of a function after interlude has gotten hold of it.

> sqrt
function(x)
x^0.5
> interlude(sqrt)
Warning messages:

assigning "sqrt" on database 0 masks an object of
the same name on database 5

> sqrt
function(x)
{

.interludE.name <- "sqrt"
on.exit({

.interludE.final <- proc.time()
if(length(.interludE.init) == 3)

.interludE.init <- c(
.interludE.init, 0, 0)

if(length(.interludE.final) == 3)
.interludE.final <- c(

.interludE.final, 0, 0)
.interludE.list <- get(".Interlude",

where = 0)
.interludE.thisl <- .interludE.list[[

.interludE.name]]
.interludE.thisl$total.time <-

.interludE.thisl$total.time + (

.interludE.final -

.interludE.init)
.interludE.thisl$ncalls <-

.interludE.thisl$ncalls + 1
.interludE.list[[.interludE.name]] <-

.interludE.thisl
assign(".Interlude", .interludE.list,

where = 0)
}
)

S Poetry c©1998 Patrick J. Burns v1.0



9.6. OBJECT-ORIENTED PROGRAMMING 223

.interludE.init <- proc.time()
x^0.5

}

So the usual function has just the last line of the modified function. There are
three new commands in the function: the name of the function is captured, an
on.exit call with a bunch of commands in it, and the current time is captured.
(The proc.time function contains the current amount of time that the S session
has consumed; so we get how much time the function uses by subtracting the
result of proc.time at the beginning from the result at the end.)

More of this sort of function modification is exhibited in the section on
Lagrange interpolation starting on page 322.

The .Program object controls what S does with the expressions that it gets.
The in-built .Program essentially parses then evaluates the expressions (plus
some other details like deciding what to print). You can use your own .Program
if you like. This is a bit like putting a new foundation under S, and is not
something that everyone will want to do.

Signals are a way to get a program to change its behavior while it is running.
Although it is possible to change the keystrokes for signals initiated by the
user, I will refer to them by their common mappings. The signals are sent
by holding down the “control” key and hitting another character. The most
common signals in Unix are control-c (interrupt), control-backslash (a stronger
interrupt), control-d (a quit signal), and control-z (background).

Use control-c to stop an S command and get back to the prompt. Control-
backslash is used in S to immediately exit from a call to browser (or debugger)
and get back to the S prompt. Use control-backslash when you are at a browser
prompt and you want to get back to an S prompt rather than have the function
continue. You probably won’t want to hit control-backslash twice since the
second signal will carry you from the S prompt to the Unix prompt. In contrast
control-c will leave you at an S prompt if you are at one already, and will leave
you at a browser prompt if that’s where you are. It is a Unix convention that
control-d will exit you from a program—S follows that convention. Control-d is
equivalent to the S command q().

There are other types of signals that are initiated by programs; examples
are floating point exceptions and segmentation violations.

9.6 Object-Oriented Programming

The UseMethod function is the key ingredient of a generic function. Often a
call to UseMethod is the entire body of the function. Typically it is the class of
the first argument which controls the method that will be dispatched. Almost
all generic functions look like:

S Poetry c©1998 Patrick J. Burns v1.0



224 CHAPTER 9. S FOR S PROGRAMMERS

> cavort
function(x, ...)
UseMethod("cavort")

The first argument to UseMethod is the name of the generic function. Although
this is optional, it is good form to include it. It is especially important to give
the generic name when the name includes a period—there could be ambiguity of
the method to use otherwise. Another use of this argument is to allow nicknames
for the generic function. An example is:

> residuals
function(object, ...)
UseMethod("residuals")
> resid
function(object, ...)
UseMethod("residuals")

If you want an argument other than the first to be the one whose class
controls the generic function, then the name of the argument needs to be given
as the second argument to UseMethod.

> gambol
function(x, y, z, ...)
UseMethod("gambol", z)

Generic functions include UseMethod, however they need not be a bare call
to UseMethod. Perhaps the simplest logical case where it isn’t is:

"%myop%" <-
function(x, y)
if(length(class(x)))

UseMethod("%myop%")
else

UseMethod("%myop%", y)

This defines a generic operator where it first checks to see if it can dispatch
using x and if not, it dispatches using y. Version 4 of S will change what you
want to do here.

The %myop% function violates the rule that a generic function should always
have the three-dots as an argument, but there is no point as long as it is always
used as an operator.

A look with browser in the frame of a generic function reveals some new
objects.

> gambol(2,4,jjz)
Called from: gambol.foo(2, 4, jjz)

S Poetry c©1998 Patrick J. Burns v1.0



9.6. OBJECT-ORIENTED PROGRAMMING 225

b(2)> ?
1: .Class
2: .Method
3: .Group
4: z
5: .Generic
6: x
7: y
8: z
b(2)> .Class
[1] "foo"
b(2)> .Method
[1] "gambol.foo"
b(2)> .Group
[1] ""
b(2)> .Generic
[1] "gambol"

The objects .Class, .Method, .Group and .Generic keep track of all of the in-
formation that may be necessary during evaluation. The .Generic and .Method
objects are self-explanatory. The .Class object gives the classes, including the
present one, that may be of use. In the case below, the "bar" class of the input
is not used because there is no method corresponding to that class.

> gambol(2, 5, jjzb)
Called from: gambol.foo(2, 5, jjzb)
b(2)> .Class
[1] "foo" "zax"
b(2)> class(z)
[1] "bar" "foo" "zax"

Groups provide a labor saving mechanism by allowing the programmer to
write a single method for a number of generic functions. The useful groups are
“Math”, “Summary” and “Ops”. The Math functions include the trigonometric
functions, gamma and so on. The Summary functions are all, any, max, min,
prod, range and sum. The Ops are the operators like addition and subtraction.
See the Math example with rational numbers on page 252 for a look at using
group methods.

I’ve been lying to you again. Although all of the generic functions that
you write will use UseMethod, functions that are a call to .Internal are also
generic. (Each group consists of the functions that call the same routine in
their .Internal.) So you can write a dim.foo function which will be used as
a method of dim for class foo even though dim is not obviously generic. These
functions are called internal generic functions.

S Poetry c©1998 Patrick J. Burns v1.0



226 CHAPTER 9. S FOR S PROGRAMMERS

For the most part, methods have no distinguishing features—they look like
ordinary functions. An exception is that NextMethod may be used in a method.
As it’s name implies, Nextmethod is synonymous with the next method available
for the generic function. I have seldom found NextMethod useful, though there
is an example of its use on page 252. Do note that the names of arguments in
methods should be the same as those in the generic function, as described on
page 128.

Inheritance is the part of object-orientation that allows you to build on top
of existing classes. In some situations this is extremely powerful. I’m sure that
some would argue that inheritance is the main point of object-orientation.

As an example, let’s produce a “loan” object that inherits from data frames.
The loan function creates an object that contains the details of the loan as it
is first made.

"loan"<-
function(amount, rate, month, year)
{

names(month.name) <- month.name
ans <- data.frame(month = month.name[month],

year = year, principal = amount,
interest = as.double(NA), payment =
as.double(NA))

attr(ans, "rate") <- rate
if(is.character(month))

month <- pmatch(month, month.name)
attr(ans, "last.date") <- c(month = month,

year = year)
class(ans) <- c("loan", "data.frame")
ans

}

All that loan does is return a data frame that is a little bit specialized for
what we want. In terms of inheritance, the key line is assigning the class to
have length greater than one. Next comes a method of the update function for
loan objects. The input in addition to the loan object is a vector of the next
payments to be made.

"update.loan"<-
function(object, payment)
{

last.date <- attr(object, "last.date")
rate <- attr(object, "rate")
npay <- length(payment)
new.month <- last.date["month"] + 1:npay
new.year <- (new.month - 1) %/% 12 + last.date[

S Poetry c©1998 Patrick J. Burns v1.0



9.6. OBJECT-ORIENTED PROGRAMMING 227

"year"]
new.month <- (new.month - 1) %% 12 + 1
last.prin <- object[nrow(object), "principal"]
new.prin <- new.inter <- numeric(npay)
for(i in 1:npay) {

new.inter[i] <- this.inter <- round((
last.prin * rate)/12, 2)

new.prin[i] <- last.prin <- last.prin +
this.inter - payment[i]

}
ans <- rbind(object, data.frame(month =

month.name[new.month], year = new.year,
principal = new.prin, interest =
new.inter, payment = payment))

attr(ans, "last.date") <- c(month = new.month[
npay], year = new.year[npay])

attr(ans, "rate") <- rate
ans

}

With just these two functions we have everything that we really need.

> jjl <- loan(45000, .07, 2, 1902)
> jjl

month year principal interest payment
1 February 1902 45000 NA NA
> update(jjl, rep(275, 5))

month year principal interest payment
1 February 1902 45000.00 NA NA
2 March 1902 44987.50 262.50 275
3 April 1902 44974.93 262.43 275
4 May 1902 44962.28 262.35 275
5 June 1902 44949.56 262.28 275
6 July 1902 44936.77 262.21 275

That inheritance comes into this, is not entirely obvious—that’s part of the
power of it. We have used subscripting, rbind and print methods inherited
from data frames without really noticing it. Each of those three functions is
non-trivial, but we didn’t have to worry about them in our application. It
would be handy to write a summary method for the loan class—the inherited
method is decidedly not what we want.

The first line of loan that puts names onto month.name allows us to use
either the number of the month or (an abbreviation of) the month name.

> loan(45000, .07, "Feb", 1902)
month year principal interest payment

1 February 1902 45000 NA NA

S Poetry c©1998 Patrick J. Burns v1.0



228 CHAPTER 9. S FOR S PROGRAMMERS

A new version of month.name is created in the frame of loan, but after the
function exits, the same month.name as usual will be the one seen.

9.7 Data Structures

An important topic in computer science is data structures. Examples of useful
data structures are hash tables, binary trees, and linked lists. In large measure
S programmers do not need to worry about these because S already provides
tools equivalent to these structures. For example, named lists or vectors can
perform similar functionality to a hash table.

Stacks are a common data structure in computer science. Below I present an
implementation of stacks in S. I do this with great trepidation for two reasons.
Stacks are often used because they are fundamental structures in the language
and hence efficient—this is not the case here. More importantly this imple-
mentation breaks the expectation about side effects in S—subscripting a stack
causes it to change, which is decidedly non-standard in S. My hope is that more
good will result from this example than abuse. I remain skeptical, though.

"stack"<-
function(length. = 64, initial = NULL, update = T)
{

ans <- vector("list", length.)
if(size <- length(initial)) {

if(size > length. && is.logical(update
) && !update)
stop("stack overflow")

ans[1:size] <- initial
}
atl <- list(class = "stack", size = size,

update = update)
attributes(ans) <- atl
ans

}

The stack function returns an object of class stack.
CODE NOTE. Notice that there is a dot at the end of the length. ar-

gument. Without the dot, the argument name would conflict with the length
function and we would get annoying warning messages. Because of partial argu-
ment name matching, we can think of the argument name being length without
the dot.

The following function is the “pop”.

"[.stack"<-

S Poetry c©1998 Patrick J. Burns v1.0



9.7. DATA STRUCTURES 229

function(x, i)
{

if(!missing(i))
stop("only empty subscripting allowed")

size <- attr(x, "size")
if(!size)

return(NULL)
ans <- unclass(x)[[size]]
xname <- deparse(substitute(x))
xloc <- whence(xname, offset = 1)
attr(x, "size") <- size - 1
if(xloc < 0)

assign(xname, x, frame = abs(xloc))
else assign(xname, x, where = min(xloc, 1))
ans

}

This performs the unpleasant deed of assigning the changed object behind the
scenes, possibly in a new location. The last item in the stack is put into ans,
and the size of the stack is changed. The item is not erased from the list, though
that may be a good idea for applications in which the items on the stack are
large.

The next function pushes an item onto the stack. This is a less troublesome
function since a side effect is expected.

"[<-.stack"<-
function(x, i, value)
{

if(!missing(i))
stop("only empty subscripting allowed")

size <- attr(x, "size")
if(size == length(x)) {

update <- attr(x, "update")
xat <- attributes(x)
if(is.logical(update)) {

if(update) {
length(x) <- 2 *
length(x)

}
else stop("stack overflow")

}
else {

length(x) <- length(x) +
update

}
attributes(x) <- xat

S Poetry c©1998 Patrick J. Burns v1.0



230 CHAPTER 9. S FOR S PROGRAMMERS

# length change destroys attributes
}
x[[size + 1]] <- value
attr(x, "size") <- size + 1
x

}

The main complication here is that the list underlying the stack may need to
be lengthened. The update argument can be either logical or numeric. If it is
numeric, then this is the number of components to be added to the list each
time it must be lengthened. When update is logical, then either the length is
doubled, or growing the stack is disallowed.

Of course we need a print method.

"print.stack"<-
function(x, ...)
{

size <- attr(x, "size")
if(size)

print(unclass(x)[1:size], ...)
else cat("(empty stack)\n")
cat("Class:", class(x), "\n")
invisible(x)

}

Here is a simple example of how a stack works.

> jjstk <- stack(3)
> print.default(jjstk)
[[1]]:
NULL

[[2]]:
NULL

[[3]]:
NULL

attr(, "class"):
[1] "stack"
attr(, "size"):
[1] 0
attr(, "update"):
[1] T
> jjstk
(empty stack)

S Poetry c©1998 Patrick J. Burns v1.0



9.8. THE R LANGUAGE 231

Class: stack
> jjstk[] <- 1:4
> jjstk[] <- 1:3
> jjstk
[[1]]:
[1] 1 2 3 4

[[2]]:
[1] 1 2 3

Class: stack
> jjstk[]
[1] 1 2 3
> jjstk
[[1]]:
[1] 1 2 3 4

Class: stack
> jjstk[]
[1] 1 2 3 4
> jjstk[]
NULL

Some would argue that an error should result from popping an empty stack.
I think it is better in general to not create an error when the result is not
demonstrably wrong—specific applications can make it an error if need be. This
is to some degree a matter of taste.

At this point the garden-variety use of the functions seems to be okay. One
might be concerned if adding a NULL item onto the stack works properly (it
does), and there are all sorts of things to be tested concerning the side effects.

Queues can be defined analogously.

9.8 The R Language

To a great extent, code that works in S will do the same thing in R. However,
there are some significant differences. One of the most drastic is that R inherits
a different idea of how to search for objects due to its lineage to Lisp.

Here is an example using R.

R> x <- -1:4
R> fjj.s.r
function ()
{
subfun <- function() {

S Poetry c©1998 Patrick J. Burns v1.0



232 CHAPTER 9. S FOR S PROGRAMMERS

x * x
}
x <- 23:25
subfun()
}
R> fjj.s.r()
[1] 529 576 625

And the same example in S.

S> x <- -1:4
S> fjj.s.r
function()
{

subfun <- function()
{

x * x
}
x <- 23:25
subfun()

}
S> fjj.s.r()
[1] 1 0 1 4 9 16

The formatting of the function is different, but the significant difference is the
answer. In S it is the global x that is used (see page 210 if you need to review).
While in R the x that is defined in the function is used. That x is a mate to
subfun because they are defined in the same environment.

9.9 Things to Do

Decide which pieces of code that you have written would be improved by making
it object-oriented. Do it.

Create a function that fully checks the input file for BATCH.

Discover the modes that I haven’t talked about, and learn what they do.

Find and fix the bugs in find.assign and global.vars.

Find some .Internal calls that do not evaluate their arguments. Why don’t
they?

The loan function uses a quite general name for a rather specific case. Gener-
alize loan so that it is worthy of its name.

S Poetry c©1998 Patrick J. Burns v1.0



9.10. FURTHER READING 233

Why didn’t I use functions named pop and push to implement stacks? Should
I have? Is there a better rule for the location of assignment for a stack that has
been popped?

Implement a class for deques.

9.10 Further Reading

Becker, Chambers and Wilks (1988) The New S Language contains a thorough
discussion of the S language. Chambers and Hastie (1992) Statistical Models
in S has some further discussion of S; in particular, Appendix A explains the
object-orientation in S.

A discussion of basic data structures is in Knuth (1973).
You can find out about R via statlib.

9.11 Quotations

28David Wagoner “Looking for Mountain Beavers”
29Wallace Stevens “Evening Without Angels”
30Gwendolyn Brooks “Boy Breaking Glass”
31Philip Mead “The Soldier”
32Theodor Geisel “Fox in Sox”
33Gwendolyn Brooks “We Real Cool”

S Poetry c©1998 Patrick J. Burns v1.0



234

S Poetry c©1998 Patrick J. Burns v1.0



Chapter 10

Numbers

Here are some examples, mostly half-baked, of numerical computations.

10.1 Changing Base

It is not unusual to want to view numbers in a base other than base 10—or
in more technical terms—to change radix. Binary, octal and hexadecimal are
particularly common bases to use.

We’ll look at an implementation of this called numberbase. Note that this
function is limited to integers. Here it is in action:

> jj <- numberbase(1:20)
> jj
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[18] 18 19 20
(base 10)
> numberbase(jj, 2)
[1] 1 10 11 100 101 110 111 1000
[9] 1001 1010 1011 1100 1101 1110 1111 10000
[17] 10001 10010 10011 10100
(base 2)
> numberbase(jj, 8)
[1] 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21
[18] 22 23 24
(base 8)
> numberbase(jj, 16)
[1] 1 2 3 4 5 6 7 8 9 a b c d e f 10 11
[18] 12 13 14
(base 16)
> numberbase(c("10011101", "1101010001"), 10, old=2)

235



236 CHAPTER 10. NUMBERS

[1] 157 849
(base 10)

The numberbase function itself is a typical generic function:

"numberbase"<-
function(x, ...)
UseMethod("numberbase")

It has two methods written for it—a default method and the rather perverse
idea of a method for objects of the class that it creates:

"numberbase.default"<-
function(x, newbase = 10, oldbase = 10)
{

ans <- to.base10(x, oldbase)
if(newbase != 10)

ans <- numberbase(ans, newbase)
ans

}

"numberbase.numberbase"<-
function(x, newbase = 10)
{

from.base10(attr(x, "value"), newbase)
}

These are nice and simple, but only because they have a couple of slaves that do
all of the work. The default method doubly cheats by calling the generic function
again. Dividing the computations like this clarifies the scheme slightly—the
function names crystalize the abstractions.

Once we look into these lower-level functions, we see how the system works.

"to.base10"<-
function(raw, oldbase)
{

to.base10.sub <- function(raw, mult, digested)
{

ncr <- nchar(raw)
this.raw <- substring(raw, ncr, ncr)
this.raw <- match(this.raw, c(0:9,

letters, "-")) - 1
digested <- ifelse(this.raw == 36, -

digested, digested + this.raw *
mult)

S Poetry c©1998 Patrick J. Burns v1.0



10.1. CHANGING BASE 237

list(raw = substring(raw, 1, ncr - 1),
digested = digested)

}
# start of main function
if(is.numeric(raw)) {

if(any(abs(round(raw) - raw) >
.Machine$double.eps)) {
warning("rounding non-integers")

}
raw <- as.character(round(raw))

}
else if(!is.character(raw))

stop(paste("can not handle data of mode",
mode(raw)))

raw <- transcribe(raw, "A-Z", "a-z")
multiple <- 1
todo <- nchar(raw) > 0
digested <- rep(0, length(raw))
while(any(todo)) {

current <- to.base10.sub(raw = raw[
todo], mult = multiple,
digested = digested[todo])

multiple <- multiple * oldbase
digested[todo] <- current$digested
raw[todo] <- current$raw
todo <- nchar(raw) > 0

}
ans <- as.character(digested)
attr(ans, "value") <- digested
attr(ans, "base") <- 10
class(ans) <- "numberbase"
ans

}

The first step is to convert numbers to character strings. Then the characters
are converted to their numeric value starting with the one’s place and moving to
the higher value places. Elements that have the largest number of characters in
their representation control the length of the while loop. Finally, ans is made
into an object of class "numberbase". The subfunction (called to.base10.sub)
takes care of doing the messy details of the work within the loop. (We should
worry for an instant what happens in the call to substring when ncr is 1, but
it works okay.)

The structure of a numberbase object is that it is a vector of the character
representation in the base of interest, and it has an attribute called "base"
that states the base of the representation, and it has a "value" attribute that
contains the numeric value.

S Poetry c©1998 Patrick J. Burns v1.0



238 CHAPTER 10. NUMBERS

from.base10 could have been written with precisely the same structure
as to.base10, but it is written in a different style to display features of the
language. Again, let me emphasize that you should use one style throughout
a project—we can expect three times as much debugging of to.base10 and
from.base10 than if we had stuck to one style.

The subfunction in from.base10 uses recursion, rather than being called
from a loop as is the subfunction in to.base10.

"from.base10"<-
function(raw, newbase)
{

from.base10.sub <- function(raw, newbase)
{

zero <- raw == 0
if(all(zero))

return(character(0))
ans <- character(length(raw))
this.digit <- raw[!zero] %% newbase
if(newbase > 10)

this.digit <- c(0:9, letters)[
this.digit + 1]

ans[!zero] <- paste(Recall(raw[!zero] %/%
newbase, newbase), this.digit,
sep = "")

ans
}
# start of main function
if(length(newbase) != 1 || newbase > 36.5 ||

newbase < 1.5 || abs(round(newbase) -
newbase) > .Machine$double.eps)
stop("need single integer between 2 and 36 as base"

)
raw <- as.numeric(raw)
wna <- which.na(raw)
if(length(wna)) {

realraw <- raw
raw <- raw[ - wna]

}
if(any(abs(round(raw) - raw) > .Machine$

double.eps))
warning("rounding non-integers")

raw <- round(raw)
ans <- from.base10.sub(abs(raw), round(newbase))
ans[nchar(ans) == 0] <- "0"
ans[raw < 0] <- paste("-", ans[raw < 0], sep

= "")

S Poetry c©1998 Patrick J. Burns v1.0



10.1. CHANGING BASE 239

if(length(wna)) {
realans <- character(length(realraw))
realans[wna] <- "NA"
realans[ - wna] <- ans
ans <- realans
raw <- realraw

}
attr(ans, "value") <- raw
attr(ans, "base") <- newbase
class(ans) <- "numberbase"
ans

}

Except for some messing about with missing values, the main actions are the
same in this function as in to.base10 except there is no loop.

from.base10.sub calls itself recursively through the Recall function. As
in all recursive functions, the first thing done in from.base10.sub is to return
if the condition is met that means it is at the bottom of the recursion. It then
does some work, and calls itself on the portion that still needs further work.
If you are confused about how this works, you can put a call to browser just
before the call to paste in order to investigate.

S functions may call themselves recursively by using their own name or by
using Recall. There are two reasons to use Recall. If you change the function
name, then you do not need to change the definition of the function if you use
Recall—you do if you hard-code the name in the definition. The second reason
is that Recall ensures that the function will be found. Since from.base10.sub
is defined within another function, it wouldn’t work if it called itself recursively
by name since the new call wouldn’t search the frame where the function is
defined. (Page 210 tells the rules for object searching.)

Many problems have a very natural recursive solution that is easy for us to
comprehend. Unfortunately, recursion does not tend to be natural in computer
languages. If the recursion is guaranteed not to go too deep, then using recursion
is good—the code is likely to be simple and easy to understand, and resources
won’t be strained. If the recursion is deep, then the code will be inefficient, and
may break on larger problems. A recursive algorithm can always be converted
to an iterative one.

The second example below illustrates what happens when recursion goes too
deep in S:

> numberbase(.Machine$integer.max, 16)
[1] 7fffffff
(base 16)
> numberbase(.Machine$integer.max, 2)
Error: Expressions nested beyond limit (256) --

increase limit with options(expressions=...)

S Poetry c©1998 Patrick J. Burns v1.0



240 CHAPTER 10. NUMBERS

only 27 of 83 frames dumped
Dumped
> options(expressions=350)
> numberbase(.Machine$integer.max, 2)
[1] 1111111111111111111111111111111
(base 2)

The expressions option is a safety valve to keep unintentional recursion from
creating an infinite loop. Since integer.max is the worst case, there is no
reason to give up the recursive algorithm, though we may want to change the
expressions option within the function. However, if we upgrade the function-
ality to include floating point numbers, we should worry about the recursion.

Here is the print method for numberbase objects.

"print.numberbase"<-
function(x, ...)
{

xv <- as.vector(x)
names(xv) <- names(x)
print(xv, quote = F)
cat(paste("(base ", attr(x, "base"), ")\n",

sep = ""))
invisible(x)

}

The most important aspects are that it follows the convention that it returns its
argument invisibly, and that that argument is named x (see page 92). Quoting
of the character strings is turned off so that the result will look like numbers
and not character strings. Of course, indicating the base is a requirement.
Additional arguments are allowed to come in even though they are not used.

The above functions seem to work reasonably well. However, informal testing
uncovered the following behavior:

> numberbase(c(NA,"10011101", "1101010001"), 10, old=2)
[1] 56 157 849
(base 10)

This is an example of a test of “garbage” inputs (page 53)—the input is not
precisely what was expected, but it is well within the realm of reason. It’s
decidedly impolite for missing values to transform themselves into normal look-
ing data, so we need to fix this. A new definition for to.base10.sub makes it
better:

to.base10.sub <- function(raw, mult, digested,

S Poetry c©1998 Patrick J. Burns v1.0



10.1. CHANGING BASE 241

oldbase)
{

ncr <- nchar(raw)
this.raw <- substring(raw, ncr, ncr)
this.raw <- match(this.raw, c(0:9,

letters, "-")) - 1
digested <- ifelse(this.raw == 36, -

digested, digested + this.raw *
mult)

bad <- this.raw >= oldbase & this.raw <
36

digested[bad] <- NA
list(raw = substring(raw, 1, ncr - 1),

digested = digested)
}

One check on whether numberbase works or not, is to go to a base and
then use the characters for that base to go back to the original base and see if
anything is different.

"fjjchecknumberbase"<-
function(x, ...)
{

xnb <- numberbase(x, ...)
xbase <- attr(xnb, "base")
xnb <- as.vector(xnb)
for(i in 2:36) {

this.nb <- numberbase(xnb, new = i,
old = xbase)

this.back <- numberbase(as.vector(
this.nb), new = xbase, old = i)

if(any(this.back != xnb))
stop(paste(

"bad conversion between bases",
xbase, "and", i))

else cat("bases", xbase, "and", i,
"okay\n")

}
}

We can test every combination of bases with a loop like:

> for(i in 2:36) fjjchecknumberbase(-1000:1000, new=i)
bases 2 and 2 okay
bases 2 and 3 okay
bases 2 and 4 okay

S Poetry c©1998 Patrick J. Burns v1.0



242 CHAPTER 10. NUMBERS

...

We don’t know if it always works, but we at least know that it works on the
numbers that we gave it. Given that it works for these, it is only extreme cases
where trouble is likely to be.

As long as the input is numeric, we are (rather accidentally) protected from
special values causing problems because an error results if we include any:

> numberbase(c(-10:10, NA, Inf))
Error in to.base10: Missing value where logical needed:
if(any(abs(round(raw) - raw) > .Machine$double.eps))

. . .
Dumped

In summary, we can have reasonable faith that numberbase performs cor-
rectly, though it would be a nicety to have special values work.

10.2 Rational Numbers

I was disillusioned once my first computer program (in Fortran) gave me an
answer. It was a program to do the quadratic equation, and it produced answers
like 1.999998 and 5.999999. I knew very well that the correct answers were 2 and
6, so I couldn’t see why a big, fancy computer couldn’t know it also. The reason,
of course, is that computations are typically done with floating point numbers of
finite length so that small numerical errors usually occur with each operation.
S hides this better than that Fortran program did because S typically computes
in double precision and prints in single precision, but the problem persists.

If you want precise computations with non-integer numbers (and your prob-
lem is suitable), then you can use rational numbers where the numerator and
denominator are each integers. Here we create a class of objects for rational
numbers. Do you dance, Minnaloushe, do you dance? 34

> jjr <- rationalnum(num=1, den=1:9)
> jjr
[1] 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9
> jjr * 2 - 1 / jjr
[1] 1 -1 -7/3 -7/2 -23/5 -17/3 -47/7 -31/4
[9] -79/9

The primary function that creates rational numbers is:

"rationalnum"<-
function(numerator, denominator)
{

S Poetry c©1998 Patrick J. Burns v1.0



10.2. RATIONAL NUMBERS 243

n <- max(ln <- length(numerator), ld <- length(
denominator))

if(ln != n)
numerator <- rep(numerator, length = n

)
if(ld != n)

denominator <- rep(denominator, length
= n)

anam <- names(numerator)
if(!length(anam))

anam <- names(denominator)
ans <- list(numerator = numerator, denominator

= denominator, names = anam)
class(ans) <- "rationalnum"
reduce.rationalnum(ans)

}

There are assignments of the arguments to max. You can put assignments
virtually anywhere, but there is a catch—you need to make sure that lazy eval-
uation isn’t going to get in the way. If the argument is not used in the call, then
it will not be evaluated and hence the assignment not made.

After the function takes care of some bureaucracy, we see that the "rationalnum"
class consists of a list of three components—the vector of numerators, the vector
of denominators, and a vector of names (which may be NULL). But the soul of
the function lies elsewhere in reduce.rationalnum:

"reduce.rationalnum"<-
function(x)
{

signnz <- function(x)
{

x <- sign(x)
x[x == 0] <- 1
x

}
# start of main function
nas <- is.na(x$numerator) | is.na(x$

denominator)
# take care of Inf before coercing to integer
if(any(out <- is.infinite(x$denominator))) {

x$denominator[out] <- 1
x$denominator[out & is.infinite(x$

numerator)] <- 0
x$numerator[out] <- 0

}
if(any(out <- is.infinite(x$numerator))) {

S Poetry c©1998 Patrick J. Burns v1.0



244 CHAPTER 10. NUMBERS

x$numerator[out] <- sign(x$numerator[
out]) * signnz(x$denominator[
out])

x$denominator[out] <- 0
}
x$numerator <- as.integer(x$numerator)
x$denominator <- as.integer(x$denominator)
fact <- great.common.div(x$numerator,

x$denominator)
x$numerator <- as.integer(x$numerator/fact *

signnz(x$denominator))
x$denominator <- as.integer(abs(x$denominator/

fact))
x$numerator[nas] <- NA
x

}

The purpose of this function is to express each number in the form in which
the numerator and denominator have no common factor. This again is mainly
taken up with details like handling missing values and infinity. The interesting
part is in great.common.div which uses Euclid’s algorithm to compute the
greatest common divisor for each numerator-denominator pair.

"great.common.div"<-
function(x, y)
{

if(length(x) != (n <- length(y)))
stop("x and y different lengths")

out <- !is.finite(x) | !is.finite(y)
x <- round(x)
y <- round(y)
okay <- y != 0
okay[out] <- F
ans <- z <- x
while(any(okay)) {

z[okay] <- x[okay] %% y[okay]
zz <- z == 0 | is.na(z)
ans[zz] <- y[zz]
okay <- okay & !zz
x[okay] <- y[okay]
y[okay] <- z[okay]

}
ans <- abs(as.integer(ans))
ans[out] <- NA
ans

}

S Poetry c©1998 Patrick J. Burns v1.0



10.2. RATIONAL NUMBERS 245

This function, like the to.base10 function discussed earlier, uses vectorized op-
erations and has a loop that stops when enough computing has been performed
on the worst-case element.

The idea of the algorithm is that the greatest common divisor of u and v
is the same as the greatest common divisor of v and u mod v. For instance, if
we start with the pair (8, 12), then 8 mod 12 is 8, so we have the pair (12, 8).
Next, 12 mod 8 = 4 to get the pair (8, 4). This leads to the pair (4, 0). Because
the v is zero, we know we are done and the answer is 4.

Knuth (1981, p 316) wants the greatest common denominator of 0 with 0
to be 0, and the greatest common denominator of u with 0 to be the absolute
value of u.

> great.common.div(c(-4:4), rep(0,9))
[1] 4 3 2 1 0 1 2 3 4

Here is a more typical problem:

> great.common.div(1:100, rep(12, 100))
[1] 1 2 3 4 1 6 1 4 3 2 1 12 1 2 3 4
[17] 1 6 1 4 3 2 1 12 1 2 3 4 1 6 1 4
[33] 3 2 1 12 1 2 3 4 1 6 1 4 3 2 1 12
[49] 1 2 3 4 1 6 1 4 3 2 1 12 1 2 3 4
[65] 1 6 1 4 3 2 1 12 1 2 3 4 1 6 1 4
[81] 3 2 1 12 1 2 3 4 1 6 1 4 3 2 1 12
[97] 1 2 3 4

The print method for the rational number class is defined as:

> print.rationalnum
function(x, ...)
{

out <- paste(x$numerator, "/", x$denominator,
sep = "")

names(out) <- x$names
xna <- is.na(x$numerator) | is.na(x$

denominator)
d1 <- x$denominator == 1
out[d1] <- x$numerator[d1]
out[xna] <- "NA"
dz <- x$denominator == 0
nz <- x$numerator == 0
out[!xna & nz & !dz] <- "0"
out[!xna & nz & dz] <- "NA"
out[!xna & x$numerator < 0 & dz] <- "-Inf"
out[!xna & x$numerator > 0 & dz] <- "Inf"
print(out, quote = F, ...)

S Poetry c©1998 Patrick J. Burns v1.0



246 CHAPTER 10. NUMBERS

invisible(x)
}

The first line and the last two lines are really what the function is about—paste
together a character string of the right thing, print it without quotes and return
the original invisibly. All of the rest is details for missing values and such.

Several functions use as.rationalnum to make sure that an object is of class
"rationalnum" when appropriate. Here is the default method for this function:

"as.rationalnum.default"<-

function(x)

{

if(inherits(x, "rationalnum"))

return(x)

switch(mode(x),

numeric = {

ans <- x

ans[] <- NA

good <- !is.na(x)

x <- x[good]

ints <- x == ceiling(x)

if(count <- sum(!ints))

warning(paste(count,

"NA(s) created coercing to rationalnum"

))

ans[good][ints] <- x[ints]

rationalnum(ans, 1)

}

,

stop(paste("can not coerce to rationalnum from mode",

mode(x))))

}

Note that there are no other methods for this function, so we could have
made it an ordinary function. However, it is believable that other methods
could be desired. We are opening the door to unforeseen uses at the expense of
only a couple dozen extra keystrokes. Since we are making it generic, we can
eke out a little more efficiency by deleting the first two lines, and creating a
method of as.rationalnum for class "rationalnum".

Coercion to rational numbers is not easy, and in consequence the function
doesn’t really do much. If we already have rational numbers, great. Otherwise,
we can convert integers, but nothing else.

Now we come to the arithmetic operators. Here is addition:

"+.rationalnum"<-
function(e1, e2)
{

S Poetry c©1998 Patrick J. Burns v1.0



10.2. RATIONAL NUMBERS 247

if(missing(e2))
return(e1)

e1 <- as.rationalnum(e1)
e2 <- as.rationalnum(e2)
# propagate names, let default ops do the details
num1 <- e1$numerator
names(num1) <- names(e1)
den2 <- e2$denominator
names(den2) <- names(e2)
rationalnum(num1 * den2 + e2$numerator * e1$

denominator, e1$denominator * den2)
}

The first thing is to see if this is a unary operator, in which case we don’t need
to do anything.

Next, do what seems to be unnecessary—coerce vectors to be rational num-
bers. Why would we be inside a method for rational numbers if we don’t have
rational numbers to begin with? Well, there is the perverse way—the method
is called directly:

"+.rationalnum"(1, 4)

but if a user does that, then they can get what they deserve. The real reason we
care is that we will end up in this method if only one of the two arguments has
class "rationalnum". We need to make sure that both are of this class before
we proceed. To make something more than a toy, we would want the coercion
to tend to go the other way—coerce rational to numeric and then proceed (but
if the non-rational numbers can be coerced to rational, then we would want to
do that). It can be a deep problem of what to do when the two arguments to a
binary operator are of different types.

Then we spend a few lines arranging for the names of the rational numbers
to end up in the result. As the comment says, we let the usual operators do all
of the work. Finally, we plug what we need into rationalnum which will take
care of reducing all of the fractions.

The minus operator is decidedly unlike the addition operator. This time the
unary operator does something, and the binary operator cheats its way out.

"-.rationalnum"<-
function(e1, e2)
{

e1 <- as.rationalnum(e1)
if(missing(e2)) {

e1$numerator <- - e1$numerator
return(e1)

}
e1 + ( - e2)

S Poetry c©1998 Patrick J. Burns v1.0



248 CHAPTER 10. NUMBERS

}

The multiplication and division operators are very similar to addition, except
that they do not allow the possibility of a unary operation.

Now we delve into the housekeeping functions:

"names.rationalnum"<-
function(x)
x$names

From this we can see that “names” is confounded. We have the names of the
numbers, which is what is contained in the names component that the above
function returns; and there are the names of the list that is the implementation
of the rational number class.

> names(jjr)
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"
[13] "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x"
[25] "y" "z"
> names(unclass(jjr))
[1] "numerator" "denominator" "names"

We need to keep these two straight.
The names function has an assignment form, and we can write a method for

this also:

"names<-.rationalnum"<-
function(x, value)
{

value <- as.character(value)
if(length(value) != length(x))

stop("bad length for names")
x$names <- value
x

}

This is the typical form of an assignment function. One argument—often named
x—that is the object being changed, and a second argument named value which
is the value given to the appropriate part of x (the object inside the parentheses
to the left of the assignment operator). The return value of the function is x.
From what you have seen, you should be upset by this definition—it presupposes
that there is a length.rationalnum (which is given below).

> jjr <- rationalnum(num=1, den=1:26)
> jjr

S Poetry c©1998 Patrick J. Burns v1.0



10.2. RATIONAL NUMBERS 249

[1] 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10
[11] 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20
[21] 1/21 1/22 1/23 1/24 1/25 1/26
> jjr2 <- jjr
> names(jjr) <- names(jjr2) <- letters
> jjr
a b c d e f g h i j k l
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12

m n o p q r s t u v
1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20 1/21 1/22

w x y z
1/23 1/24 1/25 1/26

As this example shows, S is smart about making the right thing happen. From
the definition of names<-.rationalnum it seems that we would be trying to
assign the whole of jjr2 to the names of jjr, but that is not the case.

We would like the length of a rational number object to be the number of
numbers represented by the object, as with floating point objects.

"length.rationalnum"<-
function(x)
length(x$numerator)

An assignment form is also possible:

"length<-.rationalnum"<-
function(x, value)
{

length(x$numerator) <- value
length(x$denominator) <- value
if(length(x$names))

length(x$names) <- value
x

}

DANGER. Changing the meaning of length—and to a lesser extent names—
should be undertaken only with sound reason and with some trepidation. If all
of the holes aren’t filled, there is room for disaster.

We need to know which values are missing, so we need a method for the
is.na function:

"is.na.rationalnum"<-

S Poetry c©1998 Patrick J. Burns v1.0



250 CHAPTER 10. NUMBERS

function(x)
{

is.na(x$numerator) | is.na(x$denominator) | is.nan(x)
}

This in turn needs to know about NaN’s:

"is.nan.rationalnum"<-
function(x)
{

ans <- x$numerator == 0 & x$denominator == 0
# both infinity should not occur
ans[is.na(ans)] <- F
names(ans) <- x$names
ans

}

Subscripting is extremely important functionality—here is a method for that:

"[.rationalnum"<-
function(x, i)
{

if(is.character(i))
i <- pmatch(i, x$names, dup = T)

x$numerator <- x$numerator[i]
x$denominator <- x$denominator[i]
x$names <- x$names[i]
x

}

Notice that we have to handle character subscripts on our own since the names
are not as S expects. The assignment form uses a safer approach by putting
the names onto the numerator and denominator, and then depending entirely
on the default subscripting behavior:

"[<-.rationalnum"<-
function(x, i, value)
{

value <- as.rationalnum(value)
den <- x$denominator
num <- x$numerator
names(den) <- names(num) <- x$names
den[i] <- value$denominator
num[i] <- value$numerator
x$denominator <- den
x$numerator <- num

S Poetry c©1998 Patrick J. Burns v1.0



10.2. RATIONAL NUMBERS 251

x$names <- names(den)
x

}

We, of course, want to be able to change from rational numbers to numeric
vectors. Here’s how:

"as.numeric.rationalnum"<-
function(x)
{

ans <- as.vector(x$numerator/x$denominator)
names(ans) <- names(x)
ans

}

A method for c is often quite useful. It presents the problem that it should
allow an arbitrary number of arguments.

"c.rationalnum"<-
function(...)
{

dots <- list(...)
num <- den <- nam <- NULL
has.names <- F
for(i in seq(along = dots)) {

this.rat <- as.rationalnum(dots[[i]])
num <- c(num, this.rat$numerator)
den <- c(den, this.rat$denominator)
this.nam <- this.rat$names
if(length(this.nam))

has.names <- T
else this.nam <- rep("", length(

this.rat))
nam <- c(nam, this.nam)

}
ans <- list(numerator = num, denominator = den

)
if(has.names)

ans$names <- nam
class(ans) <- "rationalnum"
ans

}

This uses the idiom of concatenating within a loop that I claimed earlier you
should not use. With some work we could avoid it, but I can’t think of an
alternative that is very appetizing. Furthermore it seems extremely rare that

S Poetry c©1998 Patrick J. Burns v1.0



252 CHAPTER 10. NUMBERS

the loop would be very long. The main complication in this function is that
some but not all of the arguments may have names. The bother with has.names
is to keep the names lined up properly.

The following statement shows that we can stand to improve as.rationalnum:

> c(jj3, NA, jj3)
Error in switch(mode(x),: can not coerce to rationalnum

from mode logical
Dumped

The provinces of his body revolted 35

A Math group method for rational numbers is useful:

"Math.rationalnum"<-
function(x, ...)
{

warning("coercing rational numbers to numeric")
x <- as.numeric(x)
NextMethod(.Generic)

}

The Math group consists of a number of functions like sin and exp. Most of
these are not closed under rational numbers, that is, if a rational number is
given as an argument, then the exact answer need not be a rational number.
So a logical thing to do for these functions is to coerce the rational numbers to
numeric and then use the usual function.

The .Generic object is a character string that gives the name of the generic
function that was called. So Math.rationalnum does three simple things: warn
that coercion is taking place, do the coercion, call the next (default) method for
the function. Here is an example:

jjr2 <- rationalnum(-5:6, 12)
> exp(jjr2)
[1] 0.6592406 0.7165313 0.7788008 0.8464817 0.9200444
[6] 1.0000000 1.0869040 1.1813604 1.2840254 1.3956124
[11] 1.5168968 1.6487213
Warning messages:

coercing rational numbers to numeric in: Math.rati\
onalnum(jjr2)

> abs(jjr2)
[1] 0.41666667 0.33333333 0.25000000 0.16666667
[5] 0.08333333 0.00000000 0.08333333 0.16666667
[9] 0.25000000 0.33333333 0.41666667 0.50000000
Warning messages:

coercing rational numbers to numeric in: Math.rati\
onalnum(jjr2)

S Poetry c©1998 Patrick J. Burns v1.0



10.2. RATIONAL NUMBERS 253

We have gone too far—there is no need to coerce to numeric to get the absolute
value. The solution is to write a method for abs—this specific method will take
precedence over the group method.

"abs.rationalnum"<-
function(x)
{

x$numerator <- abs(x$numerator)
x$denominator <- abs(x$denominator)
x

}

After this is defined, we get:

> abs(jjr2)
[1] 5/12 1/3 1/4 1/6 1/12 0 1/12 1/6 1/4 1/3
[11] 5/12 1/2

The default method for unique is implemented as selecting those elements
that are not duplicated. In writing a method of unique for rational numbers,
our trick of doing the same operation on numerator and denominator is not
going to work. The following is a cheap way out; to match the default method,
we would need to treat incomparables also.

"unique.rationalnum"<-
function(x)
{

xchar <- paste(x$numerator, "/", x$denominator
)

x$names <- NULL
x[!duplicated(xchar)]

}

With rational numbers we have the opportunity to get very precise answers
that are wrong. Checking the veracity of the computations is an important part
of the programming. Here is a function that helps with that job.

"fjjcheckrationalnum"<-
function(num = c( - Inf, -10, -7, -4, -2, -1, 0, 1, 2,

4, 7, 10, Inf, NA, 0/0), den = num, test = T)
{

anum <- expand.grid(num, den)
ratnum <- rationalnum(anum[, 1], anum[, 2])
if(test) {

all.equal(anum[, 1]/anum[, 2], ratnum$
num/ratnum$den)

S Poetry c©1998 Patrick J. Burns v1.0



254 CHAPTER 10. NUMBERS

}
else ratnum

}

The expand.grid call gives us a data frame containing every combination of
numbers in num with numbers in den. The function then either tests the value
of the rational numbers versus their true value, or returns the rational numbers.
The default value for num gives all of the special values plus 0, 1, 2, a prime
number and some composite numbers.

> fjjcheckrationalnum()
[1] T
> jjrt <- fjjcheckrationalnum(test=F)
> length(jjrt)
[1] 225
> class(jjrt)
[1] "rationalnum"

The test passes, and then we capture the vector of rational numbers for further
testing.

This is a function to test operations on rational numbers:

"fjjcheckratop"<-
function(op, r1, r2, test = T)
{

unary <- missing(r2)
n1 <- as.numeric(r1)
if(unary) {

ra <- eval(parse(text = paste(op,
deparse(substitute(r1)))))

nn <- get(op)(n1)
}
else {

n2 <- as.numeric(r2)
ra <- eval(parse(text = paste(deparse(

substitute(r1)), op, deparse(
substitute(r2)))))

nn <- get(op)(n1, n2)
}
if(test)

all.equal(nn, as.numeric(ra))
else cbind(nn, as.numeric(ra))

}

This has the same sort of form: do the computation with both rational numbers
and numeric vectors, and either compare them to see if they are all the same,
or return the numbers.

S Poetry c©1998 Patrick J. Burns v1.0



10.2. RATIONAL NUMBERS 255

> fjjcheckratop("+", jjrt, jjrt)
[1] "Missing value mismatches: 93 in current, 61 in target"
> jjrplus <- fjjcheckratop("+", jjrt, jjrt, F)

Now we see trouble. The second call gives us the numbers so that we can
investigate. The trouble boils down to:

> jjri <- rationalnum(Inf, 1)
> jjri
[1] Inf
> jjri + jjri
[1] NA

The problem is that infinity is represented as 1/0 but it would be better if it
were ∞/1. This led to a rewrite of reduce.rationalnum. The revised version
is:

"reduce.rationalnum"<-
function(x)
{

signnz <- function(x)
{

x <- sign(x)
x[x == 0] <- 1
x

}
# start of main function

num <- round(x$numerator)
den <- round(x$denominator)
nans <- ((num == 0 & den == 0) | (is.inf(num) &

is.inf(den)))
nans[is.na(nans)] <- F
nans[is.nan(num) | is.nan(den)] <- T
nas <- (is.na(num) | is.na(den)) & !nans
infs <- ((is.inf(num) & !is.inf(den)) | (num !=

0 & den == 0)) & !nas & !nans
zeros <- is.inf(den) & !nans & !nas
out <- nas | nans | infs | zeros
fact <- great.common.div(num[!out], den[!out])
x$numerator[!out] <- as.integer(num[!out]/fact *

signnz(den[!out]))
x$denominator[!out] <- as.integer(abs(den[!out

]/fact))
x$numerator[nans] <- x$denominator[nans] <-

as.integer(0)
x$numerator[infs] <- (Inf * signnz(den[infs]) *

S Poetry c©1998 Patrick J. Burns v1.0



256 CHAPTER 10. NUMBERS

signnz(num[infs]))
x$denominator[infs | zeros] <- 1
x$numerator[zeros] <- 0
x$numerator[nas] <- NA
x

}

I like this version much better. That it works correctly is of course a plus, but
it is more firmly rooted in the problem. The first version tried to get by with
minimal attention to the weird cases—as a result it had code that was hard to
understand (as well as being wrong). This version accepts that there are special
cases to be addressed, and attacks them head on. Thankfully the bug has saved
us from staying with the original version.

You will notice that I’m fairly liberal in my use of parentheses in logical
statements—it’s easier this way to be sure that S and I are both thinking the
same.

10.3 Polygamma

The digamma function, often denoted ψ(x), is defined as

ψ(x) =
d

dx
logeΓ(x) (10.1)

That is, this is the first derivative of the lgamma function.

DANGER. Some people use Γ(x+ 1) instead of Γ(x). There is an easy trans-
lation between the two forms. However, this difference is subtle enough to give
you headaches if you are checking your answers, and wrong answers if you are
not.

Each polygamma function is a derivative of ψ(x) of some order. The trigamma
function is the first derivative, the tetragamma function is the second derivative,
and so on.

Our polygamma S function specifies the order of the derivative of ψ via either
a number or a character string.

> polygamma(1:5, 1)
[1] 1.6449341 0.6449341 0.3949341 0.2838230 0.2213230
> polygamma(1:5, "trigam")
[1] 1.6449341 0.6449341 0.3949341 0.2838230 0.2213230
> polygamma(1, 1:4)
[1] 1.644934 -2.404114 6.493939 -24.886266

S Poetry c©1998 Patrick J. Burns v1.0



10.3. POLYGAMMA 257

The first two commands are the same—they merely use different conventions for
indicating which polygamma function to compute. The last call is for a single
x value at four different orders of the derivative.

Here is the S code:

"polygamma"<-
function(x, n, low = 0.0001, high = 100, terms = 5)
{

if(!length(x))
return(x)

if(is.character(n)) {
n <- pmatch(n, c("trigamma",

"tetragamma", "pentagamma",
"hexagamma"), dup=T)

if(any(is.na(n)))
stop("unknown or ambiguous name")

}
else {

n <- round(n)
if(any(n < 1))

stop("n must be a positive integer")
}
terms[terms > 30] <- 30
xatt <- attributes(x)
x <- as.numeric(x)
if(any(x <= 0, na.rm = T))

stop("only positive values allowed")
alldat <- cbind(x = x, n = n, low = low, high

= high, terms = terms)
xna <- is.na(alldat[, "x"])
alldat[xna, "x"] <- 0.5 * alldat[xna, "low"]
if(!is.loaded(symbol.C("polygamma_Sp")))

poet.dyn.load("polygamma.o")
ans <- .C("polygamma_Sp",

as.double(alldat[, "x"]),
as.integer(dim(alldat)[1]),
as.integer(alldat[, "n"]),
as.double(alldat[, "low"]),
as.double(alldat[, "high"]),
as.integer(alldat[, "terms"]),
as.double(gamma(alldat[, "n"] + 1)))[[
1]]

ans[xna] <- NA
if(length(ans) == length(x))

attributes(ans) <- xatt
ans

S Poetry c©1998 Patrick J. Burns v1.0



258 CHAPTER 10. NUMBERS

}

Here are the steps that the function performs. If the length of the input is zero,
then just return it—it is often much cleaner when functions work with zero
length inputs. If n is given as character, then convert to the numeric order of
the derivative. Save the attributes of the input x so that they can be given to
the output. Test the validity of the input, and scream if it isn’t right. The call
to cbind is a kludge of significance. We want the function to be vectorized in
all of the arguments, so we use cbind to do all of the necessary replications
and issuing of warnings in a single line of our code. We’re not interested in the
matrix that results—we only want everyone to be the same length. Another
kludge follows in which the locations of missing values are noted, and then
replaced by an arbitrary number—we’ll put the missing values back in the end.
Finally we call C where the real work is done, and then clean up the result
before returning.

Below is the C code that computes the values. This is listed in a logical
order, but note that some compilers insist that static objects be defined in a
file before they are used. Such compilers would be upset with the order of these
functions.

#include <math.h>

void

polygamma_Sp(x, len, n, low, high, terms, nfact)

long *len, *n, *terms;

double *x, *low, *high, *nfact;

{

long i;

double polygamma();

for(i=0; i < *len; i++) {

x[i] = polygamma(x[i], n[i], low[i], high[i],

terms[i], nfact[i]);

}

}

/* Bernoulli numbers of even order from 2 to 60 */

static double

bernou[30] = {1.0/6.0, -1.0/30.0, 1.0/42.0, -1.0/30.0, 5.0/66.0,

-691.0/2730.0, 7.0/6.0, -3617.0/510.0, 43867.0/798.0,

-174611.0/330.0, 854513.0/138.0, -236364091.0/2730.0,

8553103.0/6.0, -23749461029.0/870.0, 8615841276005.0/14322.0,

-7709321041217.0/510.0, 2577687858367.0/6.0,

-1.371165521e13, 4.883323190e14, -1.929657934e16,

8.416930476e17, -4.033807185e19, 2.115074864e21,

-1.208662652e23, 7.500866746e24, -5.038778101e26,

3.652877648e28, -2.849876930e30, 2.386542750e32,

-2.139994926e34};

S Poetry c©1998 Patrick J. Burns v1.0



10.3. POLYGAMMA 259

static double

polygamma(x, n, low, high, terms, nfact)

long n, terms;

double x, low, high, nfact;

{

/*

* polygamma function of a real positive x

* no checks are made here on the suitability

* of arguments

*/

long i;

double asign, ans = 0.0, nd = (double) n, nexp, ser = 0.0;

double t0, x2_inv;

asign = (n % 2) ? 1.0 : -1.0;

if(x < low) {

return(asign * nfact / nd * pow(x, - nd) *

(1.0 + nd * .5 / x));

}

nexp = - nd - 1.0;

while(x < high) {

ans = ans + asign * nfact * pow(x, nexp);

x = x + 1.0;

}

t0 = nfact / nd * pow(x, - nd);

ser = t0 * ( 1.0 + nd * .5 / x);

x2_inv = pow(x, -2.0);

for(i=0; i < terms; i++) {

if(n ==1) {

t0 = t0 * x2_inv;

} else {

t0 = (2.0 * i + nd + 3.0) / (2.0 * i + 4.0) *

(2.0 * i + nd + 2.0) / (2.0 * i + 3.0) *

t0 * x2_inv;

}

ser = ser + bernou[i] * t0;

}

ans = ans + asign * ser;

return(ans);

}

polygamma Sp is called from S—it merely vectorizes the call to the real
computing function. Here’s the idea of the algorithm that the polygamma C

S Poetry c©1998 Patrick J. Burns v1.0



260 CHAPTER 10. NUMBERS

function uses. If x is close to zero, then we have a good approximation. If x is
large, then we have a good approximation. We have a formula for the function
at x in terms of the function at x + 1. If x is neither big nor small, then use
the recurrence formula n times where x + n is larger than the lower bound for
“big”.

Checking that we are getting correct answers is a little problematic. We
can achieve some measure of comfort by seeing that our answers match some
of those listed in Abramowitz and Stegun (1964). All of the results of the
following function should be close to zero.

> fjjcheckpolygam
function()
{

x <- c(1.095, 1.92, 1.11, 1.11, 1.98, 1.98)
n <- c(1, 1, 2, 3, 2, 3)
pg <- c(1.4426631755, 0.6789231293,

-1.8170975731, 4.3602088083,
-0.4141726631, 0.5120891127)

polygamma(x, n) - pg
}
> fjjcheckpolygam()
[1] 1.090934e-10 3.076084e-11 2.168104e-09
[4] -1.319442e-10 2.126171e-09 -9.041279e-11

In general this looks good, but the values for the tetragamma (third and fifth)
are a little worrisome. Let’s revise the function so that we can control the
computations and investigate further.

> fjjcheckpolygam
function(...)
{

x <- c(1.095, 1.92, 1.11, 1.11, 1.98, 1.98)
n <- c(1, 1, 2, 3, 2, 3)
pg <- c(1.4426631755, 0.6789231293,

-1.8170975731, 4.3602088083,
-0.4141726631, 0.5120891127)

polygamma(x, n, ...) - pg
}
> fjjcheckpolygam(terms=9)
[1] 1.090934e-10 3.076084e-11 2.168104e-09
[4] -1.319442e-10 2.126171e-09 -9.041279e-11
> fjjcheckpolygam(high=200)
[1] 1.090941e-10 3.076095e-11 9.430390e-11
[4] -1.956035e-11 1.252483e-10 1.713751e-11

S Poetry c©1998 Patrick J. Burns v1.0



10.3. POLYGAMMA 261

Increasing the number of terms has little effect, but changing high does give us
the accuracy contained in the table.

Another check is to see if the multiplication formula works. The formula is:

ψ(n)(mx) =
1

mn+1

m−1∑
k=0

ψ(n)

(
x+

k

m

)
(10.2)

The following function vectorizes this with the help of the outer function.

> fjjpolygammult
function(x, n, mult = 2, ...)
{

if(length(n) != 1 || length(mult) != 1)
stop("bad input")

partials <- polygamma(outer(x, (0:(mult - 1))/
mult, "+"), n)

partials <- partials %*% rep(mult^( - (n + 1)),
mult)

drop((polygamma(x * mult, n, ...) - partials)/
abs(partials))

}

One side of the equation is subtracted from the other so that the result should
be near zero, and the difference is normalized so we get the relative difference.
The “bad input” error message would be too terse if this were a function that
would be used much. But this is a private function that is just for verifying, so
just making sure that we use it properly is good enough.

Here is how we do:

> fjjpolygammult(c(.5, 5, 10, 100, 1000, 1e6), 1)
[1] -4.049608e-16 -6.598018e-16 5.413523e-16
[4] -1.730390e-16 0.000000e+00 2.117582e-16
> fjjpolygammult(c(.5, 5, 10, 100, 1000, 1e6), 2)
[1] 6.955094e-10 1.513223e-07 6.362287e-07
[4] -1.636471e-05 -1.663615e-07 -1.668093e-13
> fjjpolygammult(c(.5, 5, 10, 100, 1000, 1e6), 3)
[1] -1.574678e-11 -4.407812e-08 -3.796090e-07
[4] 4.270955e-05 4.364444e-07 4.377635e-13
> fjjpolygammult(c(.5, 5, 10, 100, 1000, 1e6), 20)
[1] 2.104482e-16 0.000000e+00 1.124138e-16
[4] -1.860500e-03 -2.072273e-05 -2.097891e-11

We can do a transformation to see about how many significant digits we get:

> round(-log10(abs(fjjpolygammult(c(0.5, 5, 10, 100,
+ 1000, 1e6), 2, high=900))), 1)
[1] 9.6 7.3 6.7 4.7 6.8 12.8

S Poetry c©1998 Patrick J. Burns v1.0



262 CHAPTER 10. NUMBERS

Values near 100 seem to be the most troublesome. The following examines
the effect of changes in the high argument for tetragamma of 100:

> print(as.matrix(polygamma(100, 2, high=c(50,100, 200,
+ 400, 1000, 5000, 1e5))), digits=15)

[,1]
[1,] -0.000101002777700007
[2,] -0.000101002777700007
[3,] -0.000101004860945850
[4,] -0.000101004991152816
[5,] -0.000101004999611128
[6,] -0.000101004999832995
[7,] -0.000101004999833349

The differences in these values shows that it is probably too much to hope for to
have one single choice for the parameters that control the algorithm. This does,
however, show the value of S to investigate the quality of the computations.

10.4 Digamma

The digamma function is more useful and simpler than the polygamma, but it
comes afterwards because complex as well as numeric arguments are allowed in
the S implementation.

> digamma(-2:5)
[1] NA NA NA -0.5772157
[5] 0.4227843 0.9227843 1.2561177 1.5061177
> digamma(complex(re=0:4, im=4:0))
[1] 1.3915363+1.6957963i 1.1079807+1.4041297i
[3] 0.9145915+0.9208073i 0.9946503+0.3766740i
[5] 1.2561177+0.0000000i

"digamma"<-
function(x)
{

if(!is.loaded(symbol.C("digamma_real_Sp")))
poet.dyn.load("digamma.o")

if(is.complex(x)) {
n <- length(x)
if(!n)

return(x)
ans <- .C("digamma_complex_Sp",

NAOK = T,
specialsok = T,

S Poetry c©1998 Patrick J. Burns v1.0



10.4. DIGAMMA 263

z = as.complex(x),
as.integer(n),
ans.almost = complex(n))

ans <- ans$ans.almost + log(ans$z)
attributes(ans) <- attributes(x)
ans

}
else {

storage.mode(x) <- "double"
.C("digamma_real_Sp",

NAOK = T,
specialsok = T,
x,
as.integer(length(x)))[[1]]

}
}

This function contains only a test of the mode of the input to decide which of
two C functions to use.

Here’s the C code:

#include <math.h>

#include <S.h>

void

digamma_real_Sp(x, n)

long *n;

double *x;

{

long i;

double digamma_real_pos();

for(i=0; i < *n; i++) {

if(is_na(x + i, DOUBLE)) ;

else if(x[i] <= 0.0) na_set3(x + i, DOUBLE, Is_NaN);

else if(is_inf(x + i, DOUBLE)) inf_set(x + i, DOUBLE, 1);

else x[i] = digamma_real_pos(x[i]);

}

}

static double stirling[] = {

-8.333333333333333e-02, 8.333333333333333e-03,

-3.968253968253968e-03, 4.166666666666667e-03,

-7.575757575757576e-03, 2.109279609279609e-02,

-8.333333333333334e-02, 4.432598039215686e-01,

-3.053954330270120e+00, 2.645621212121212e+01,

-2.814601449275362e+02, 3.607510546398047e+03

S Poetry c©1998 Patrick J. Burns v1.0



264 CHAPTER 10. NUMBERS

};

static double

digamma_real_pos(x)

double x;

{

long i;

double lower, upper, euler_one, ans, x_inv, x_pow;

lower = 1.0e-8;

upper = 19.5;

/* euler = -.577215664901532860606512; */

euler_one = .422784335098467139393488;

/* expects x to be positive and finite - NO CHECKS HERE */

if(x < lower) {

ans = - 1.0 / x - 1.0 / (1.0 + x) + euler_one;

return(ans);

}

ans = 0.0;

while(x < upper) {

ans = ans - 1.0 / x;

x = x + 1.0;

}

x_inv = 1.0 / x;

ans = ans + log(x) - .5 * x_inv;

x_inv = x_inv * x_inv;

x_pow = x_inv;

for(i=0; i < 12; i++) {

ans = ans + stirling[i] * x_pow;

x_pow = x_pow * x_inv;

}

return(ans);

}

void

digamma_complex_Sp(z, n, ans)

long *n;

complex z[], ans[];

/* the usual shortcut of *z for z[] is not a good idea here */

{

long j, i;

double upper;

S Poetry c©1998 Patrick J. Burns v1.0



10.4. DIGAMMA 265

complex z_inv, z_pow;

complex mult_complex(), inverse_complex();

upper = 19.5;

for(j=0; j < *n; j++) {

if(is_na(z + j, COMPLEX)) {

continue;

}

if(is_inf(z + j, COMPLEX)) {

na_set3(ans + j, COMPLEX, Is_NaN);

continue;

}

ans[j].re = 0.0; ans[j].im = 0.0;

while(z[j].re < upper) {

z_inv = inverse_complex(z[j]);

ans[j].re = ans[j].re - z_inv.re;

ans[j].im = ans[j].im - z_inv.im;

z[j].re = z[j].re + 1.0;

}

z_inv = inverse_complex(z[j]);

ans[j].re = ans[j].re - .5 * z_inv.re;

ans[j].im = ans[j].im - .5 * z_inv.im;

z_inv = mult_complex(z_inv, z_inv);

z_pow = z_inv;

for(i=0; i < 12; i++) {

ans[j].re = ans[j].re + stirling[i] * z_pow.re;

ans[j].im = ans[j].im + stirling[i] * z_pow.im;

z_pow = mult_complex(z_pow, z_inv);

}

/* ans still needs log(z) added to it */

}

}

static complex

mult_complex(x, y)

complex x, y;

{

complex ans;

ans.re = x.re * y.re - x.im * y.im;

ans.im = x.im * y.re + x.re * y.im;

return(ans);

}

S Poetry c©1998 Patrick J. Burns v1.0



266 CHAPTER 10. NUMBERS

static complex

inverse_complex(x)

complex x;

{

complex ans;

double den;

den = x.im * x.im + x.re * x.re;

ans.re = x.re / den;

ans.im = - x.im / den;

return(ans);

}

The computing algorithms are analogous to the polygamma algorithm. In
this case, though, the parameters are hard-coded in C. Another difference is
that the complex version has no lower cutoff—it iterates until the real part is
large enough. Hence it will be slow to compute values for numbers with large
negative real parts.

The C routines called by S take care of special values with the macros that
live in S.h. Complex arithmetic operators are not available to us, so we need to
make our own. To perform this algorithm, all we need is complex multiplication
and inversion. We need a complex logarithm also, but that can be done at the
end in S.

This code provides an example of how to test and set special values in C code
written for S. Note that the .C call needs additional arguments so that special
values can be passed into C. An introduction to dealing with special values in
C is on page 175.

The comment in digamma real pos about checks on appropriate inputs is
to help ensure that good code will be written when this routine is stolen for
another purpose.

Here is a test of garbage input:

> digamma(letters)
[1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[18] NA NA NA NA NA NA NA NA NA
Warning messages:

26 missing values generated coercing from character
to numeric in: storage.mode(x) <- "double"

This is not such a bad thing to happen—it doesn’t seem worth creating an error
for this.

As with the polygamma functions, it is a non-trivial task to verify that our
computations are correct. One thing we know for all real numbers is that the
complex version should match the real version:

S Poetry c©1998 Patrick J. Burns v1.0



10.4. DIGAMMA 267

> Mod(digamma(10:20) - digamma(as.complex(10:20)))
[1] 0.000000e+00 0.000000e+00 0.000000e+00
[4] 0.000000e+00 0.000000e+00 0.000000e+00
[7] 4.440892e-16 4.440892e-16 0.000000e+00
[10] 0.000000e+00 0.000000e+00

This is not an especially good test to see if we get the right answers (since both
algorithms could be wrong), but it is a good test to make sure that we haven’t
made a blunder in one of the C functions—the complex arithmetic would have
been a likely spot.

Here is a function that returns the difference between the result of digamma
and values from a table in Abramowitz and Stegun (1964).

> fjjcheckdigam
function()
{

x <- c(1, 1.055, 1.965, 2, 56, 100)
digx <- c(-0.57721566490153, -0.4902094448,

0.3999605371, 0.4227843351,
4.016396547, 4.6001618527)

digamma(x) - digx
}
> fjjcheckdigam()
[1] -3.330669e-15 -1.574552e-11 2.545408e-12
[4] -1.533662e-12 2.455547e-11 3.808776e-11

We only have 10 digits from Abramowitz and Stegun except for the first value
which is Euler’s constant, so the test passes. Here is a similar test with complex
numbers:

> fjjcheckdigamcom
function()
{

z <- c(2+10i, 1.4+5.9i, 1+8.4i)
digamz <- c(2.31332+1.42179i, 1.78533+1.41907i,

2.1294144191+1.51127i)
digamma(z) - digamz

}
> fjjcheckdigamcom()
[1] 2.537704e-07-3.574195e-06i
[2] 2.306153e-06-1.216597e-06i
[3] -2.293676e-11+2.517271e-06i

This also gives as good of results as we can expect.

S Poetry c©1998 Patrick J. Burns v1.0



268 CHAPTER 10. NUMBERS

There is a duplication formula for the digamma. We can use it to reassure
ourselves. The equation is

ψ(2z) =
1
2
ψ(z) +

1
2
ψ

(
z +

1
2

)
+ log(2) (10.3)

Once again in the test function, we subtract one side of the equation from the
other so that the result should be near zero:

> fjjdigamdup
function(z)
{

Mod(0.5 * digamma(z) + 0.5 * digamma(z + 0.5) +
log(2) - digamma(2 * z))

}
> fjjdigamdup(complex(re=1:10, im=2:11))
[1] 3.140185e-16 2.220446e-16 4.440892e-16
[4] 8.950904e-16 0.000000e+00 1.110223e-16
[7] 1.110223e-16 1.110223e-16 0.000000e+00
[10] 4.440892e-16

We can also use the reflection formula as a test. The equation is

ψ(1− z) = ψ(z) + π cot(πz) (10.4)

and the test function is:

> fjjdigamreflect
function(z)
{

Mod(digamma(z) + pi/tan(pi * z) - digamma(1 -
z))

}
> fjjdigamreflect(jj <- complex(re=rnorm(10, sd=1000),
+ im=rnorm(10, sd=1000)))
[1] 8.881784e-16 1.776357e-15 9.930137e-16
[4] 2.220446e-16 2.220446e-16 1.110223e-16
[7] 9.155134e-16 2.081668e-16 9.930137e-16
[10] 1.110223e-15

So far we haven’t found a reason to disbelieve digamma.

10.5 Continued Fractions

Continued fractions are a way of approximating a function. They often represent
an alternative to a series approximation to the function. When both types of

S Poetry c©1998 Patrick J. Burns v1.0



10.5. CONTINUED FRACTIONS 269

approximation exist for a function, it can be the case that the continued fraction
converges fast in one part of the domain and the series converges fast in the
other.

A continued fraction can be written as
a1

b1 +
a2

b2+
a3
b3

(10.5)

but for typographical convenience is usually written

a1

b1+
a2

b2+
a3

b3+
(10.6)

which gives the opportunity to add an ellipsis since most continued fractions of
interest are infinite.

The first thing that we do is write a simple function to compute a continued
fraction:

"fjjcontinue.fraction"<-
function(a, b)
{

n <- length(a)
if(length(b) != n)

stop("a and b do not match")
if(n < 2)

stop("not enough terms")
bottom <- b[n]
for(i in n:2) {

bottom <- b[i - 1] + a[i]/bottom
}
a[1]/bottom

}

This has the distinct disadvantage that it is not vectorized, so it is of little value.
Below is one way of vectorizing the computations—I’m not convinced that it is
the best way.

"continue.fraction"<-
function(num, den)
{

num <- as.matrix(num)
den <- as.matrix(den)
if(any(dim(num) != dim(den)))

stop("num and den do not match")
n <- nrow(num)
if(n < 2)

S Poetry c©1998 Patrick J. Burns v1.0



270 CHAPTER 10. NUMBERS

stop("not enough terms")
bottom <- den[n, ]
for(i in n:2) {

bottom <- den[i - 1, ] + num[i, ]/
bottom

}
num[1, ]/bottom

}

This function takes two matrices of the same size, the number of columns is
the length of the result, and the number of rows is the number of terms in the
continued fractions. Although this function could be called directly, it is more
likely that another function that returns a mathematical function will call it.

One function that can be computed well with a continued fraction is the
exponential integral. It is defined as

En(z) =
∫ ∞

1

e−zt

tn
dt (10.7)

where n is a non-negative integer. Real values of z must be positive.

Press et al (1992) give the continued fraction in which we are interested:

En(z) = e−z
(

1
z + n−

n

z + n+ 2−
2(n+ 1)
z + n+ 4− · · ·

i(n+ i− 1)
z + n+ 2i− · · ·

)
(10.8)

This is relatively easy to translate into S:

"fjjexp.integral"<-
function(z, n, nterms = 9)
{

outlen <- max(length(z), length(n))
z <- rep(z, length = outlen)
n <- rep(n, length = outlen)
tseq <- 0:(nterms - 1)
num <- - outer(tseq - 1, n, "+") * tseq
num[1, ] <- 1
den <- outer(2 * tseq, z + n, "+")
exp( - z) * continue.fraction(num, den)

}

The outer function is instrumental in creating the matrices that are required
by continue.fraction.

As always, we turn to the tables in Abramowitz and Stegun (1964) to see
if we are doing it right:

S Poetry c©1998 Patrick J. Burns v1.0



10.5. CONTINUED FRACTIONS 271

> fjjcheckexpint
function(nterms = 9)
{

x <- c(1.95, 0.99, 0.5, 0.01, 0.01, 0.01, 0.01,
1.01, 1.01, 1.01, 1.01, 1.01)

n <- c(1, 1, 1, 3, 4, 10, 20, 2, 3, 4, 10, 20)
enx <- c(0.05241438, 0.223099826, 0.559773595,

0.4902766, 0.3283824, 0.1098682,
0.052079, 0.1463199, 0.1082179,
0.084973, 0.0359929, 0.0181539)

fjjexp.integral(x, n, nterms = nterms) - enx
}
> fjjcheckexpint()
[1] -1.756406e-07 -2.682575e-05 -9.489412e-04
[4] -7.990076e-03 -1.397079e-03 -2.188219e-06
[7] -5.328954e-08 -2.038522e-05 -1.198577e-05
[10] -6.257321e-06 -1.073663e-07 2.527789e-08
> fjjcheckexpint(100)
[1] -4.320013e-10 -2.098228e-10 -2.268147e-10
[4] -3.533094e-05 -9.879388e-07 2.627358e-08
[7] -4.582066e-08 3.953909e-08 2.031852e-08
[10] -3.998339e-08 1.111485e-08 2.632293e-08
> fjjcheckexpint(200)
[1] -4.320013e-10 -2.098227e-10 -2.238392e-10
[4] -4.090723e-06 -1.107696e-07 2.627360e-08
[7] -4.582066e-08 3.953909e-08 2.031852e-08
[10] -3.998339e-08 1.111485e-08 2.632293e-08

The continued fraction is reputed to converge slowest for small numbers. The
algorithm in Press et al (1992) uses a series approximation instead of the
continued fraction for numbers less than 1. It appears that using 100 terms in
the continued fraction is a reasonable compromise between speed and accuracy.

We can also check a few points for complex numbers:

> fjjcheckexpintcomp
function(nterms)
{

z <- c(-2+0.2i, 1i, 2.5+0.6i)
n <- rep(1, length(z))
enzl <- c(-4.219228+0.636779i,

-0.337404+0.946083i,
0.961532+0.218215i)

fjjexp.integral(z, n, nterms = nterms) + log(z
) - enzl

}
> fjjcheckexpintcomp(100)

S Poetry c©1998 Patrick J. Burns v1.0



272 CHAPTER 10. NUMBERS

[1] -3.580492e-01+8.532514e-02i
[2] 7.710208e-08+7.036693e-08i
[3] -2.616037e-07-2.712842e-07i
> fjjcheckexpintcomp(1000)
[1] 8.268037e-04-5.364546e-05i
[2] 7.709903e-08+7.036718e-08i
[3] -2.616037e-07-2.712842e-07i
> fjjcheckexpintcomp(5000)
[1] -3.853327e-07-1.648335e-07i
[2] 7.709903e-08+7.036718e-08i
[3] -2.616037e-07-2.712842e-07i

We now have good evidence that the function is coded properly, but we are left
in the uncomfortable situation of not knowing where in the complex plane the
approximation is going to be poor.

Finally, the function can be made to behave more like other mathematical
functions. The restriction put on n may cause some annoyance, but more likely
it will catch blunders.

"exp.integral"<-
function(x, n, nterms = 100)
{

if(!length(x))
return(x)

xatt <- attributes(x)
x <- as.vector(x)
outlen <- length(x)
if(length(n) == 1)

n <- rep(n, outlen)
else if(length(n) != outlen)

stop("n must be one long or the length of x")
n <- round(n)
tseq <- 0:(nterms - 1)
num <- - outer(tseq - 1, n, "+") * tseq
num[1, ] <- 1
den <- outer(2 * tseq, x + n, "+")
ans <- exp( - x) * continue.fraction(num, den)
attributes(ans) <- xatt
ans

}

If we needed an accurate calculation of the exponential integral function, then we
would want to create code (in C) that would ensure that we got good accuracy
for every value. We don’t have that here, but we do have an algorithm that
works for both numeric and complex arguments that was quick to create.

S Poetry c©1998 Patrick J. Burns v1.0



10.6. THINGS TO DO 273

10.6 Things to Do

Extend the functionality of numberbase to non-integers, missing values and
infinity. Is there a better way of organizing the computations?

Teach numberbase to do mathematics. If the bases of two numbers in an op-
eration are different, then what base should the answer be? How will you test
the results?

Write a function based on scan that will read in rational numbers printed in
the same format that print.rationalnum uses. Is it robust to differences in
white-space?

Make rational numbers work within arrays, data frames and so on. Include
matrix multiplication, and fill in any other holes in the implementation.

There is no error given when there is overflow in the denominator or numerator
in rationalnum objects:

> jjr3 <- rationalnum(1, c(353, 713, 927, 213))
> > jjr3[1] * jjr3[2] * jjr3[3]
[1] 1/233315703
> jjr3[1] * jjr3[2] * jjr3[3] * jjr3[4]
[1] -1/1843362813

How would you fix this problem? Are there changes that can be made to reduce
the problem, even without a proper fix? Find and fix any other problems with
rational numbers.

Revise the great.common.div function to use C code. Write both a Euclidean
algorithm version and a binary algorithm version of the C code. Is it worth
changing to C code? Which algorithm works better? A description of the
binary algorithm is given in Knuth (1981).

Try to write a better version of continue.fraction.

Create functionality for rational complex numbers.

Make a class of objects of rational numbers in an arbitrary base.

The polyroot S-PLUS function finds the roots of a polynomial of order at most
48. Create a function that does not have such a limitation. Young and Gregory
(1973, volume 1) has a chapter on roots of polynomials.

Try out at least three ways of evaluating polynomials. Test them for speed and
memory use.

Write functions that allow infinite-precision arithmetic.

S Poetry c©1998 Patrick J. Burns v1.0



274

Create functions that do symbolic mathematics.

Write a suite of functions to do interval arithmetic. That is, instead of each
quantity being a single number, you have a range of numbers that the quantity
is known to lie in.

10.7 Further Reading

Knuth (1981) Seminumerical Algorithms contains a great deal of interesting
material related to mathematical computing. It presents pretty much all you
are likely to want to know about rational arithmetic. Other topics include radix
conversion and continued fractions.

Other books that discuss numerical computation include Young and Gregory
(1973) A Survey of Numerical Mathematics; Hamming (1973) Numerical Meth-
ods for Scientists and Engineers. Hamming discusses the polygamma functions,
but uses the Γ(x+ 1) form.

Abramowitz and Stegun (1964) Handbook of Mathematical Functions con-
tains much information on mathematical functions including the digamma and
polygamma functions and the exponential integral. Approximations, tables of
values and relationships between functions are just some of what is included.

Press et al (1992) Numerical Recipes in C, Second Edition provides many
numerical algorithms. In particular, they have one for the exponential integral
for real values.

Wall (1948). gives an in-depth treatment of continued fractions.

10.8 Quotations

34William Butler Yeats “The Cat and the Moon”
35W. H. Auden “In Memory of W. B. Yeats”

S Poetry c©1998 Patrick J. Burns v1.0



Chapter 11

Character

Here the focus is character data. No belly and no bowels, Only consonants and
vowels. 36

11.1 Perl

This is a function that provides a simple interface to Perl. It assumes that the
same action will be performed on each element of the input x.

"perl"<-
function(x, cmd, preface = "", print = T, trace = F)
{

ploc <- tempfile("sperl")
on.exit(unlink(ploc))
perl.pre <- c("#!/usr/bin/perl", preface,

"while(<>) {")
if(print)

perl.post <- c(";\tprint $_ ;", "}")
else perl.post <- c(";", "}")
cat(file = ploc, c(perl.pre, cmd, perl.post),

sep = "\n")
if(trace) {

foo <- unix(paste("cat", ploc), out =
F)

}
ans <- unix(paste("perl", ploc), x)
if(length(ans) == length(x))

attributes(ans) <- attributes(x)
ans

}

275



276 CHAPTER 11. CHARACTER

There are other ways to use Perl of course, but this is probably the most
natural for S. This function starts by creating a file that contains a Perl script. If
trace is TRUE, then the script is printed—this is useful for debugging purposes.
Finally the script is run, and the answer is given the attributes of the input if
the lengths match.

The transcribe function uses perl.

"transcribe"<-
function(x, old, new = "", complement = F, delete = F,

squash = F, sep = "/")
{

flags <- paste(c("c", "d", "s")[c(complement,
delete, squash)], collapse = "")

if(complement)
old <- paste(old, "\\n", sep = "")

ptext <- paste("tr", sep, old, sep, new, sep,
flags, " ;", sep = "")

if(length(ptext) != 1)
stop("old and new must each be single strings")

perl(x, ptext)
}

In good textbook fashion, I have presented this in reverse order. In reality,
a version of transcribe came first—that was the task at hand—then the Perl
part of the function was abstracted out and transcribe rewritten.

Switching between upper and lower case is one use for transcribe.

> jjsn <- state.name[21:32]
> jjsn
[1] "Massachusetts" "Michigan" "Minnesota"
[4] "Mississippi" "Missouri" "Montana"
[7] "Nebraska" "Nevada" "New Hampshire"
[10] "New Jersey" "New Mexico" "New York"
> transcribe(jjsn, "A-Z", "a-z")
[1] "massachusetts" "michigan" "minnesota"
[4] "mississippi" "missouri" "montana"
[7] "nebraska" "nevada" "new hampshire"
[10] "new jersey" "new mexico" "new york"
> transcribe(jjsn, "a-z", "A-Z")
[1] "MASSACHUSETTS" "MICHIGAN" "MINNESOTA"
[4] "MISSISSIPPI" "MISSOURI" "MONTANA"
[7] "NEBRASKA" "NEVADA" "NEW HAMPSHIRE"
[10] "NEW JERSEY" "NEW MEXICO" "NEW YORK"

Other amusements include:

S Poetry c©1998 Patrick J. Burns v1.0



11.1. PERL 277

> transcribe(jjsn, "aeiou", delete=T)
[1] "Msschstts" "Mchgn" "Mnnst" "Msssspp"
[5] "Mssr" "Mntn" "Nbrsk" "Nvd"
[9] "Nw Hmpshr" "Nw Jrsy" "Nw Mxc" "Nw Yrk"
> transcribe(transcribe(jjsn, "aeiou", delete=T),
+ "a-z", "a-z", squash=T)
[1] "Mschsts" "Mchgn" "Mnst" "Msp"
[5] "Msr" "Mntn" "Nbrsk" "Nvd"
[9] "Nw Hmpshr" "Nw Jrsy" "Nw Mxc" "Nw Yrk"
> transcribe(jjsn, "aeiou", "_", comp=T)
[1] "_a__a__u_e___" "_i__i_a_" "_i__e_o_a"
[4] "_i__i__i__i" "_i__ou_i" "_o__a_a"
[7] "_e__a__a" "_e_a_a" "_e___a____i_e"
[10] "_e___e__e_" "_e___e_i_o" "_e___o__"
> transcribe(jjsn, "aeiou", "_", comp=T, delete=T)
[1] "aaue" "iia" "ieoa" "iiii" "ioui" "oaa" "eaa"
[8] "eaa" "eaie" "eee" "eeio" "eo"

When you’re done playing, you can use transcribe to change names valid in
C to valid S names, and vice versa.

> transcribe("state_name", "_", ".")
[1] "state.name"
> transcribe("state.name", ".", "_")
[1] "state_name"

This is its use in portoptgen of page 348.

The substifile function uses Perl in a different fashion. Here the intent is
not to change S objects, but to change files.

"substifile"<-
function(filenames, old, new, sep = "/", backup =

".jj")
{

if(length(old) != 1 || length(new) != 1)
stop("old and new must be single strings")

if(nchar(sep) != 1)
stop("sep needs to be a single character")

if(any(AsciiToInt(sep) == AsciiToInt(c(old,
new))))
stop("sep character in old or new")

cmd <- paste("perl -p -i", backup, " -e \"s",
sep, old, sep, new, sep, " ;\" ",
paste(filenames, collapse = " "), sep
= "")

S Poetry c©1998 Patrick J. Burns v1.0



278 CHAPTER 11. CHARACTER

unix(cmd, out = F)
}

A vector of file names is taken as well as a string to be replaced and a string to
substitute in. Some checks are made to ensure that the input is okay, then the
command is pasted together, and finally the command is executed. The return
value of substifile is the return value of the call to unix with output=F, which
is the exit status of the command. The p flag to Perl invokes a while loop like
the one that the perl function creates. The i flag means to do the changes in
place; if followed by a string, then backup copies of the original files are created,
adding the string as a suffix to the filenames.

The substifile function is used later (in portoptgen, page 348) to modify
template files to be specific to a particular case.

An alternative to Perl for manipulating character strings is C. Basic func-
tionality is obtained with the strings.h header file.

11.2 Home Brew

Although S is relatively weak on functionality for character data, quite a lot
can be done with its in-built functions. Most often of use are paste, substring
and nchar.

Here is a function to justify a vector of character strings. The format func-
tion does this, but you have no control over how it does it.

"justify"<-
function(x, type = "r")
{

type <- unabbrev.value(type, c("right",
"center", "left"))

x <- as.character(x)
ncx <- nchar(x)
blanks <- paste(rep(" ", max(ncx)), collapse

= "")
blanks <- substring(blanks, 1, max(ncx) - ncx)
switch(type,

right = paste(blanks, x, sep = ""),
left = paste(x, blanks, sep = ""),
center = {

blank.half <- nchar(blanks) %/%
2

paste(substring(blanks, 1,
blank.half), x,
substring(blanks,

S Poetry c©1998 Patrick J. Burns v1.0



11.2. HOME BREW 279

blank.half + 1), sep
= "")

}
)

}

The blanks variable is first created as a single string of a certain number of
blank spaces, then it is replicated to the length of x via substring. All the
rest of the function is quite simple. Below is an illustration of the three types
of justification.

> as.matrix(justify(dimnames(freeny.x)[[2]], "r"))
[,1]

[1,] "lag quarterly revenue"
[2,] " price index"
[3,] " income level"
[4,] " market potential"
> as.matrix(justify(dimnames(freeny.x)[[2]], "l"))

[,1]
[1,] "lag quarterly revenue"
[2,] "price index "
[3,] "income level "
[4,] "market potential "
> as.matrix(justify(dimnames(freeny.x)[[2]], "c"))

[,1]
[1,] "lag quarterly revenue"
[2,] " price index "
[3,] " income level "
[4,] " market potential "

There is a description of “valid” S names on page 4, here is a function that
determines if each element of a character vector is a valid name.

"valid.s.name"<-
function(x)
{

xnum <- lapply(x, AsciiToInt)
the.table <- c(48:57, 46, 65:90, 97:122)
xmatch <- lapply(xnum, match, table =

the.table, nomatch = 0)
good <- unlist(lapply(xmatch, function(z)
all(z > 10)))
bad <- unlist(lapply(xmatch, function(z)
any(z == 0) || all(z < 11) || !length(z)))
ans <- rep(NA, length(x))

S Poetry c©1998 Patrick J. Burns v1.0



280 CHAPTER 11. CHARACTER

ans[good] <- T
ans[bad] <- F
ugly <- !good & !bad
if(any(ugly)) {

xug <- unlist(lapply(xmatch[ugly],
function(z)

z[z != 11][1] > 11))
ans[ugly][xug] <- T
ans[ugly][!xug] <- F

}
names(ans) <- names(x)
ans

}

. Although this does get the answer, we are straining ourselves for such a simple
request. The first thing is to use lapply to effectively vectorize AsciiToInt.
All of the rest is dealing with subscripting with logicals. Notice that special
attention needs to be given to the empty string—this falls under the heading of
“test along seams” discussed on page 53.

A use of this function is to make sure that a group of functions are under
proper source control. Suppose that you have an object manifest that is a
vector of the names of all the functions you want to have controlled. Some of
these may be operators or assignment functions, and have a different name on
the dump file. You can issue a command like:

for(i in manifest[valid.s.name(manifest)]) {
cat("\n", i, "\n")
print(diffsccs(i))

}

Then view the names of the strange ones with:

manifest[!valid.s.name(manifest)]

These can be checked with diffsccs by knowing the naming convention.

The find.I.of function does a very specific thing—take a string and find
the location of calls to the I function in it. Page 301 tells why we would want
to do this.

So here’s the game: Find where the “I”s are that correspond to calls to the
function, then find where the calls end.

> find.I.of
function(string, nesting.ok = F)
{

string.code <- AsciiToInt(string)

S Poetry c©1998 Patrick J. Burns v1.0



11.2. HOME BREW 281

if(!any(eyes <- string.code == AsciiToInt("I")))
return(NULL)

open.par <- AsciiToInt("(")
close.par <- AsciiToInt(")")
opens <- string.code == open.par
Istart <- eyes & c(opens[-1], F)
if(!any(Istart))

return(NULL)
closes <- string.code == close.par
counts <- cumsum(opens - closes)
Istart.num <- seq(along = Istart)[Istart]
ans <- array(0, c(length(Istart.num), 2))
for(i in 1:length(Istart.num)) {

loci <- Istart.num[i]
this.lev <- counts[-1: - loci] ==

counts[loci]
if(!any(this.lev))

stop("no closing parenthesis for I")
ans[i, ] <- c(0, min(seq(along =

this.lev)[this.lev])) + loci
}
if(!nesting.ok && nrow(ans) > 1) {

ans <- ans[c(T, diff(ans[, 2]) > 0), ,
drop = F]

}
ans

}

The hard part is finding the end of the call. The counts variable tells how many
opening parentheses haven’t yet had a closing parenthesis to match it. The for
loop finds all of the calls, then later the nested calls are removed if required.
Notice the drop = F to ensure that we always end up with a matrix.

Here are some examples:

> jjs1
[1] "~ jj1 + 2:4 * jjI"
> find.I.of(jjs1)
NULL
> jjs2
[1] "~ jj1 * I((2*jjI)+1)"
> find.I.of(jjs2)

[,1] [,2]
[1,] 9 20
> jjs3
[1] "~ jj1 * 2:4"
> find.I.of(jjs3)

S Poetry c©1998 Patrick J. Burns v1.0



282 CHAPTER 11. CHARACTER

NULL
> jjs4
[1] "~ I((2)* I(jee+3)) + 2+I(3^x) + I (y^2)"
> find.I.of(jjs4)

[,1] [,2]
[1,] 3 18
[2,] 24 29
> find.I.of(jjs4, T)

[,1] [,2]
[1,] 3 18
[2,] 10 17
[3,] 24 29

Notice that the call in jjs4 that has a space between the “I” and the “(” is
not found by the function. But this isn’t really much of a problem because the
space won’t be there if the string is parsed and then deparsed.

11.3 Things to Do

Make a list of desirable functionality for character data. How best can it be
achieved?

The comparison operators like < work with character data where the ordering
comes from ASCII. Create a function that will compare character vectors using
an arbitrary ordering of characters. Use this to create a function that will sort
according to the arbitrary ordering.

Create a function for playing “hangman”.

Write a function that takes a vector and returns a list where each component of
the result contains the “words” in the corresponding element of the input. How
general can you make it?

Rewrite valid.s.name using the perl function. Try improving my version of
the function using only “native” functionality. How should the reserved words
of S be handled?

Write a function that generalizes find.I.of, so that it can be a simple call to
your function.

11.4 Further Reading

The two books Programming Perl by Wall, Christiansen and Schwartz, plus
Learning Perl by Schwartz provide a good explanation of the Perl language.

S Poetry c©1998 Patrick J. Burns v1.0



11.5. QUOTATIONS 283

11.5 Quotations

36John Crowe Ransom “Survey of Literature”

S Poetry c©1998 Patrick J. Burns v1.0



284

S Poetry c©1998 Patrick J. Burns v1.0



Chapter 12

Arrays

The focus is on arrays that have more than two dimensions, but we start with
matrices. See also the section in the chapter on C about dealing with arrays in
C code—it starts on page 173.

12.1 Matrices

The square root of a symmetric matrix A is defined as any matrix R such that

A = R′R (12.1)

where the prime denotes the transpose. The Choleski decomposition provides
one square root. This is the particular square root that is upper triangular.

> jjfv <- var(freeny.x)
> jjfvc <- chol(jjfv)
> > max(abs(t(jjfvc) %*% jjfvc - jjfv))
[1] 1.387779e-17

Sometimes it is desirable to have the symmetric square root. Here is a function
that returns it, or its inverse.

"symsqrt"<-
function(x, inverse = F, tol = 1e-10)
{

dx <- dim(x)
if(dx[1] != dx[2])

stop("need square matrix")
if(any(abs(x - t(x)) > tol * max(abs(x))))

stop("need symmetric matrix")
xeig <- eigen(x, sym = T)

285



286 CHAPTER 12. ARRAYS

if(inverse)
xeig$vectors %*% (xeig$values^-0.5 * t(

xeig$vectors))
else xeig$vectors %*% (xeig$values^0.5 * t(

xeig$vectors))
}

This performs an eigen decomposition of the matrix, takes the square root (or
inverse square root) of each eigenvalue, and then puts the matrix back together
again. In effect it uses a sparse matrix technique for the diagonal matrix of
eigenvalues.

Now test it to see that it does return a square root, and that the result is
symmetric.

> jjfvs <- symsqrt(jjfv)
> max(abs(jjfvs %*% jjfvs - jjfv))
[1] 1.526557e-16
> max(abs(jjfvs - t(jjfvs)))
[1] 0

There are, in fact, a whole group of square roots. The following function
returns a random square root.

"rmatsqrt"<-
function(x)
{

xc <- chol(x)
x[] <- runif(dim(x)[1]^2)
orthmat <- svd(x)$v
orthmat %*% xc

}

This finds one square root with chol, then creates an orthogonal matrix out
of a matrix of random numbers. These two are then multiplied to produce the
random square root.

Below two different square roots are produced, shown to be different, and
then checked to see that they really are square roots of the matrix in question.

> jjsv1 <- rmatsqrt(var(freeny.x))
> jjsv2 <- rmatsqrt(var(freeny.x))
> jjsv1

lag quarterly revenue price index income level
[1,] -0.21783334 0.09945160 -0.07706364
[2,] -0.10834290 0.03956840 -0.02901060
[3,] -0.19116893 0.06958443 -0.08713387

S Poetry c©1998 Patrick J. Burns v1.0



12.2. ARRAY FUNCTIONS 287

[4,] -0.06152129 0.03854587 -0.01156840
market potential

[1,] -0.047556536
[2,] -0.021705228
[3,] -0.036462742
[4,] -0.009923954
> jjsv2

lag quarterly revenue price index income level
[1,] -0.1831166 0.08579325 -0.06217413
[2,] -0.1119885 0.04130825 -0.06180107
[3,] -0.1560023 0.05075554 -0.06170711
[4,] -0.1706170 0.07836504 -0.05489805

market potential
[1,] -0.03474957
[2,] -0.02301239
[3,] -0.03051149
[4,] -0.03863553
> all.equal(t(jjsv1) %*% jjsv1, var(freeny.x))
[1] T
> all.equal(t(jjsv2) %*% jjsv2, var(freeny.x))
[1] T

12.2 Array Functions

This section contains functions that make it easier to use higher-dimensional
arrays.

Stable Apply

When the function used in apply returns a vector, then those vectors fill along
the first dimension of the result. For example, sorting the rows of a matrix will
give you the transpose of what one would naively expect.

> jjmr <- matrix(sample(15), 3)
> jjmr

[,1] [,2] [,3] [,4] [,5]
[1,] 14 3 1 2 10
[2,] 12 13 9 4 15
[3,] 7 11 8 5 6
> apply(jjmr, 1, sort)

[,1] [,2] [,3]
[1,] 1 4 5
[2,] 2 9 6
[3,] 3 12 7

S Poetry c©1998 Patrick J. Burns v1.0



288 CHAPTER 12. ARRAYS

[4,] 10 13 8
[5,] 14 15 11

The stable.apply function keeps the dimensions of the output in the same
order as the input.

> stable.apply(jjmr, 1, sort)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 10 14
[2,] 4 9 12 13 15
[3,] 5 6 7 8 11

Here is the definition of stable.apply.

"stable.apply"<-
function(X, MARGIN, FUN, ...)
{

ldx <- length(dim(X))
if(length(MARGIN) != ldx - 1) {

warning("stability not performed")
return(apply(X, MARGIN, FUN, ...))

}
ans <- apply(X, MARGIN, FUN, ...)
if(length(dim(ans)) != ldx)

ans
else aperm(ans, order(c((1:ldx)[ - MARGIN], MARGIN)))

}

You can see from this that I’ve overstated the case somewhat—the dimensions
are left intact only when a single dimension is being “collapsed”. The only real
operation except feeding the problem to apply is to permute the dimensions
with aperm (which you can read about on page 87).

Binding Arrays

An operation that is fairly common with higher-dimensional arrays is to bind
them together—similar to rbind and cbind with matrices. Here are a couple
of examples.

> jjm3 <- array(1:6, c(2,3))
> jjm4 <- jjm3 + 7
> bind.array(jjm3, jjm4, 3)

, , 1
[,1] [,2] [,3]

[1,] 1 3 5

S Poetry c©1998 Patrick J. Burns v1.0



12.2. ARRAY FUNCTIONS 289

[2,] 2 4 6

, , 2
[,1] [,2] [,3]

[1,] 8 10 12
[2,] 9 11 13
> bind.array(jjm3, jjm4, 2)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 8 10 12
[2,] 2 4 6 9 11 13

This last command is the same as a cbind call. Here’s the definition.

"bind.array"<-
function(x, y, margin)
{

ldx <- length(dx <- dim(x))
ldy <- length(dy <- dim(y))
if(ldx != ldy)

stop("length of dimensions not equal")
margin <- round(margin)
if(margin < 1)

stop("bad value for margin")
if(margin > ldx) {

if(margin - ldx == 1) {
dx <- c(dx, 1)
ldx <- ldx + 1
dy <- c(dy, 1)
x <- array(x, dx, if(length(

dimnames(x))) c(
dimnames(x), list(
NULL)))

y <- array(y, dy, if(length(
dimnames(x))) c(
dimnames(y), list(
NULL)))

}
else stop("bad value for margin")

}
if(any(dx[ - margin] != dy[ - margin]))

stop("arrays not conformable")
newdim <- dx
newdim[margin] <- dx[margin] + dy[margin]
newdimnames <- dimnames(x)
newdimnames[[margin]] <- c(dimnames(x)[[margin

]], dimnames(y)[[margin]])

S Poetry c©1998 Patrick J. Burns v1.0



290 CHAPTER 12. ARRAYS

ans <- array(x[1], newdim, newdimnames)
cmd <- paste("ans[", paste(rep(",", margin - 1

), collapse = " "), "1:dx[margin]",
paste(rep(",", ldx - margin), collapse
= " "), "] <- x")

eval(parse(text = cmd))
cmd <- paste("ans[", paste(rep(",", margin - 1

), collapse = " "),
"dx[margin] + 1:dy[margin]", paste(rep(
",", ldx - margin), collapse = " "),
"] <- y")

eval(parse(text = cmd))
ans

}

There is a lot of messing around with details, but essentially all that is done is
to create the answer to be the right size and shape, then use the eval-parse-text
idiom twice to put the inputs into the proper locations of the answer.

12.3 Things to Do

Find and fix the bugs in bind.array. A particular one is that it only accepts
two arrays. Check how you are doing by looking at the abind function from
Statlib submitted by Tony Plate and Rich Heiberger.

Create a function that generalizes a matrix computation to three-dimensional
arrays.

12.4 Further Reading

A discussion of computations with matrices is Golub and Van Loan (1983).

S Poetry c©1998 Patrick J. Burns v1.0



Chapter 13

Formulas

Formulas provide a mechanism for giving a function an arbitrarily complex
input. It is never necessary to have a function take a formula—the same func-
tionality can be achieved through other means—however, formulas can offer a
clean interface to the user.

A formula is a call to the tilde operator. This operator does essentially
nothing—the result is a call to the operator that has class "formula". A brief
explanation of this is on page 203.

Many of the modeling functions use the terms function which digests a
formula. Although terms is useful in many situations, it is not necessary to
use it with formulas—the mathematical graph example later in this chapter, for
instance, does not use terms.

13.1 Lazy Evaluation

Formulas are the main trouble spot with lazy evaluation. Formulas have their
own form of lazy evaluation that is distinct from but similar to the lazy evalu-
ation of function arguments. The contents of a formula are not evaluated when
the formula is evaluated. It is only when the data are really needed that eval-
uation will happen, and this can happen an arbitrary number of frames away
from where the formula is given.

Here is a simplified example of how the problem might arise. We create a
formula containing x and y in our function where they are perfectly behaved
objects. However, the formula is passed to another function where it is actually
used.

"fjjlz1"<-
function(x, y)
{

291



292 CHAPTER 13. FORMULAS

subfun <- function(form)
{

lm(form)
}
form <- y ~ x
subfun(form)

}

The result is none too good. By the time the variables within the formula are
needed, S doesn’t know the proper place to look for them.

> fjjlz1(jjx, jjy)
Error in subfun(form): Object "y" not found
Dumped

There are a couple of remedies. One is to make global variables of those that
appear in the formula.

"fjjlz2"<-
function(x, y)
{

subfun <- function(form)
{

lm(form)
}
form <- y ~ x
assign("x", x, frame = 1)
assign("y", y, frame = 1)
subfun(form)

}

We get an answer instead of an error.

> fjjlz2(jjx, jjy)
Call:
lm(formula = form)

Coefficients:
(Intercept) x1 x2

0.476645 0.9723329 -0.248944

Degrees of freedom: 10 total; 7 residual
Residual standard error: 0.4326354

Perhaps the preferred solution is to keep the data and the formula together.
The statistical modeling functions that take formulas expect a data frame of
data.

S Poetry c©1998 Patrick J. Burns v1.0



13.1. LAZY EVALUATION 293

"fjjlz3"<-
function(x, y)
{

subfun <- function(form, df)
{

lm(form, data = df)
}
form <- y ~ x
df <- data.frame(x = x, y = y)
subfun(form, df)

}

Now we try it.

> fjjlz3(jjx, jjy)
Error in subfun(form, df): Object "x" not found
Dumped

This would be the preferred technique if it worked. Let’s use debugger to see
where the trouble lies.

> debugger()
Message: Object "x" not found

1:
2: fjjlz3(jjx, jjy)
3: subfun(form, df)
4: lm(form, data = df)
5: eval(m, sys.parent())
6: model.frame.default(formula = form, data = df)
7: subfun(form, df)
Selection: 2
Frame of fjjlz3(jjx, jjy)
d(2)> ?
1: df
2: y
3: x
4: form
5: subfun
d(2)> df

x.1 x.2 y
1 1 0.07007709 1.569356
2 2 -0.53393595 2.983659
3 3 -0.03948787 3.366048
4 4 0.49557847 3.768500
5 5 0.23720871 5.634129

S Poetry c©1998 Patrick J. Burns v1.0



294 CHAPTER 13. FORMULAS

6 6 -0.25087103 5.722343
7 7 -1.16859131 7.272687
8 8 1.92886521 7.657451
9 9 1.00915360 9.374802
10 10 -1.23286270 10.767544

The problem is that data.frame doesn’t put a matrix in as a single item, but
makes a column for each column of the matrix. (Usually this is the desired
behavior, but obviously not always.)

"fjjlz4"<-
function(x, y)
{

subfun <- function(form, df)
{

lm(form, data = df)
}
form <- y ~ x
df <- data.frame(y = y)
df$x <- x
subfun(form, df)

}

This new version presumes that y will be a vector, and then puts x into the
data frame “by hand” in case it is a matrix. Now, once again we get an answer.

> fjjlz4(jjx, jjy)
Call:
lm(formula = form, data = df)

Coefficients:
(Intercept) x1 x2

0.476645 0.9723329 -0.248944

Degrees of freedom: 10 total; 7 residual
Residual standard error: 0.4326354

There is another mechanism for passing the data along with the formula since
modeling functions typically take an integer indicating the frame in which the
objects are to be found as well as a data frame of the objects. (Thus the dual
use of the word “frame”.) Here’s our function to do that.

"fjjlz5"<-
function(x, y)
{

subfun <- function(form, df)
{

S Poetry c©1998 Patrick J. Burns v1.0



13.1. LAZY EVALUATION 295

lm(form, data = df)
}
form <- y ~ x
subfun(form, sys.nframe())

}

We want to point to the frame of fjjlz5. Even though the sys.nframe() is
inside the call to subfun, it is evaluated in the frame of fjjlz5 so it is correct.
A call to sys.frame (giving the frame rather than just the frame number) would
work also. An alternative way of doing it would have been to have the command
inside subfun be:

lm(form, data = sys.parent())

Now for the test of the function.

> fjjlz5(jjx, jjy)
Error in model.matrix.default(Terms, ..: Invalid data.\

class(x) ("argument")
Dumped

This is a problem with the lazy evaluation of arguments. The mode of something
from the formula is still argument—meaning it hasn’t been evaluated yet—
rather than something that a numerical routine might be happy with. So we fix
things up.

"fjjlz6"<-
function(x, y)
{

subfun <- function(form, df)
{

lm(form, data = df)
}
x <- x
eval(y)
form <- y ~ x
subfun(form, sys.frame())

}

Both x and y need to be evaluated. This uses one method for each. And
assigning a variable to itself does indeed make a difference.

> fjjlz6(jjx, jjy)
Call:
lm(formula = form, data = df)

Coefficients:

S Poetry c©1998 Patrick J. Burns v1.0



296 CHAPTER 13. FORMULAS

(Intercept) x1 x2
0.476645 0.9723329 -0.248944

Degrees of freedom: 10 total; 7 residual
Residual standard error: 0.4326354

13.2 Manipulating Formulas

A formula need not have a left-hand (response) side. In operator terms, the
tilde can be either unary or binary.

A formula is really an object of mode call (the call is to the tilde operator).
The first component of a call is the function, and subsequent components are the
arguments. Thus, when both sides of the formula are given, then the formula has
length 3—the second component is the left-hand side and the third component
is the right-hand side. When only the right-hand side is given, the formula has
length 2, and the second component contains the right-hand side.

A common operation is to add the left-hand side to a formula if it doesn’t
exist—the following code does this, where form is a formula:

if(length(form) == 2) {
form[[3]] <- form[[2]]
form[[2]] <- as.name("z")

}

This code puts the component originally in the second position into a new
third component, then changes the second component. The second and third
components of a formula should be either of mode name or of mode call.

The operators in formulas often have a special meaning. For example in

y ~ x1 + x2

x1 is not being added to x2—it is that both are to be included. If you use a
formula that is given to the terms function, then the “hat” operator as well as
addition is special. The formula

y ~ x^2

will not be interpreted as the square of x. If that is what you want, then write:

y ~ I(x^2)

The I construct means to interpret functions in the usual sense of S rather than
the “formula” sense.

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 297

13.3 Mathematical Graphs

A mathematical graph is a collection of nodes (also called vertices), and a
collection of edges that each connect two of the nodes. Edges can be either
directed or undirected. A graph that contains only directed edges is called a
directed graph.

The mathgraph function creates an object representing a mathematical graph.
The form of the graph is given to mathgraph via a formula. Obviously a graph
can be arbitrarily complex, so it makes some sense to use a formula to describe
it.

Let’s start with some examples.

> mathgraph(~ 1:3 / 2:4)
[1] node 1 <-> node 2
[2] node 2 <-> node 3
[3] node 3 <-> node 4

class: mathgraph
> mathgraph(~ 1:3 * 2:4)
[1] node 1 <-> node 2
[2] node 2 <-> node 2
[3] node 3 <-> node 2
[4] node 1 <-> node 3
[5] node 2 <-> node 3
[6] node 3 <-> node 3
[7] node 1 <-> node 4
[8] node 2 <-> node 4
[9] node 3 <-> node 4

class: mathgraph
> mathgraph(~ 1:3 / 4)
[1] node 1 <-> node 4
[2] node 2 <-> node 4
[3] node 3 <-> node 4

class: mathgraph

This displays the two main operators in mathgraph formulas. The slash operator
connects each element in the first vector with the corresponding element in the
second—as the last example shows, the usual replication rules hold. The star
operator makes a star by connecting each element of the first vector with all of
the elements in the second.

There is also the plus operator that concatenates the terms together.

> mathgraph(~ 1:3 / 2:4 + mathgraph(~ c(3,1) / c(2,4), dir=T))

S Poetry c©1998 Patrick J. Burns v1.0



298 CHAPTER 13. FORMULAS

[1] node 1 <-> node 2
[2] node 2 <-> node 3
[3] node 3 <-> node 4
[4] node 3 -> node 2
[5] node 1 -> node 4

class: mathgraph

This example shows that a term can not only be a call to * or /, but also it
can be another mathgraph object. In this case, the second term is of a directed
graph.

The nodes need not be numbers, they can be character strings also.

> mathgraph(~ state.name[2:4] * state.name[12:13])
[1] Alaska <-> Idaho
[2] Arizona <-> Idaho
[3] Arkansas <-> Idaho
[4] Alaska <-> Illinois
[5] Arizona <-> Illinois
[6] Arkansas <-> Illinois

class: mathgraph

Here is the definition of the mathgraph function.

"mathgraph"<-
function(formula, directed = F, data = sys.parent())
{

if(missing(formula)) {
ans <- NULL

}
else {

ans <- build.mathgraph(formula, data
= data)

adir <- attr(ans, "directed")
adir[is.na(adir)] <- directed
attr(ans, "directed") <- adir

}
class(ans) <- "mathgraph"
ans

}

First, we allow the possibility of an empty graph. The real work is done by
build.mathgraph, then a few additions are put on. The directed argument
allows the edges that are created to be either directed or undirected. The data
argument provides a way around problems with lazy evaluation as discussed on
page 291.

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 299

The build.mathgraph function looks like:

"build.mathgraph"<-

function(formula, data)

{

cterm <- deparse(formula[[2]])

allterms <- unpaste(cterm, sep = "+")

ans <- NULL

adir <- logical(0)

for(i in seq(along = allterms)) {

raw <- allterms[[i]]

this.parse <- parse(text = raw)

if(length(this.parse[[1]]) == 1) {

this.op <- " "

}

else {

this.op <- as.character(this.parse[[1]][[1]])

}

switch(this.op,

"/" = {

e1 <- eval(this.parse[[1]][[2]], data)

e2 <- eval(this.parse[[1]][[3]], data)

this.ev <- cbind(e1, e2)

ans <- rbind(ans, this.ev)

adir <- c(adir, rep(NA, dim(this.ev)[1]))

}

,

"*" = {

e1 <- eval(this.parse[[1]][[2]], data)

e2 <- eval(this.parse[[1]][[3]], data)

e1 <- unique(e1)

e2 <- unique(e2)

le1 <- length(e1)

le2 <- length(e2)

e1 <- e1[rep(1:le1, le2)]

e2 <- e2[rep(1:le2, rep(le1, le2))]

this.ev <- cbind(e1, e2)

ans <- rbind(ans, this.ev)

adir <- c(adir, rep(NA, dim(this.ev)[1]))

}

,

{

this.ev <- eval(this.parse, data)

if(inherits(this.ev, "mathgraph")) {

ans <- rbind(ans, this.ev)

adir <- c(adir, attr(this.ev, "directed"))

}

else stop(paste(

"do not know how to handle term:", raw))

}

S Poetry c©1998 Patrick J. Burns v1.0



300 CHAPTER 13. FORMULAS

)

}

attr(ans, "directed") <- adir

ans

}

This breaks a character representation of the formula into the individual
terms, then creates the representation for each term. It represents the graph
with a two-column matrix where each row stands for an edge and the entries
are the two nodes connected by the edge.

The print method for mathgraph produces a fairly clear representation of
the graph that also matches the structure of the object quite closely.

"print.mathgraph"<-
function(x, prefix.node = if(is.character(xu)) ""

else "node", ...)
{

if(length(unclass(x))) {
xu <- unclass(x)
if(length(the.nams <- names(x))) {

the.nams <- paste(justify(
the.nams, "r"), " ",
sep = "")

}
else {

the.nams <- paste("[", format(
1:length(x)), "] ",
sep = "")

}
out <- paste(the.nams, prefix.node, xu[

, 1], ifelse(attr(x,
"directed"), " ->", "<->"),
prefix.node, xu[, 2])

cat(out, sep = "\n")
cat("\nclass:", class(x), "\n")

}
else {

cat("mathgraph()\n")
}
invisible(x)

}

As always, if the last line of a print method is not invisible(x), then it is
wrong. This essentially just pastes the nodes for each edge together with a
symbol for the directions of the edge between. Some of the code (including the
call to justify which is given on page 278) refers to the names of the graph—

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 301

we will get to names shortly. Another part of the code indicates numerical
subscripting which we will also get to later.

Let’s be a little more adventurous.

> jj1 <- 1:3
> mathgraph(~ jj1 * jj1+1)
Error in switch(this.op,: do not know how to handle

term: 1
Dumped

The statement above doesn’t work, and it shouldn’t. The intention there was
to add one to each of the numbers in jj1, but the plus sign is interpreted as
introducing a second term in the formula rather than as performing addition.
The way around this is to surround operations that are to be interpreted in the
usual sense instead of the formula sense with a call to I.

> mathgraph(~ jj1 * I(jj1+1))
Syntax error: end.of.file ("\n") used illegally at this point:
jj1 * I(jj1

Dumped

However, this doesn’t give us much satisfaction either. Actually, this doesn’t
even come close—the formula is broken into pieces between plus signs, so we
end up with something that doesn’t even parse.

We need to revise build.mathgraph to handle I. Here is the first part of
the revised version of build.mathgraph.

function(formula, data)
{

cterm <- paste(collapse = "", deparse(formula[[2]]))
eyes <- find.I.of(cterm)
if(length(eyes)) {

# calls to I() need to be evaluated
nI <- nrow(eyes)
Inames <- paste("Build.mathgraphI",

sys.nframe(), 1:nI, sep = ".")
Iexpr <- substring(cterm, eyes[, 1] +

2, eyes[, 2] - 1)
for(i in 1:nI) {

this.val <- eval(parse(text =
Iexpr[i]), data)

assign(Inames[i], this.val,
frame = 1)

}
eye.ext <- matrix(c(0, t(eyes), nchar(

S Poetry c©1998 Patrick J. Burns v1.0



302 CHAPTER 13. FORMULAS

cterm) + 2), nrow = 2)
allI.strings <- character(2 * nI + 1)
allI.strings[2 * (1:nI)] <- Inames
allI.strings[seq(1, 2 * nI + 1, by = 2

)] <- substring(cterm, eye.ext[
1, ] + 1, eye.ext[2, ] - 1)

cterm <- paste(allI.strings, collapse
= "")

}
allterms <- unpaste(cterm, sep = "+")

You may notice that the first line (that uses deparse) has been changed. This
has nothing to do with I, but rather fixes a bug when the formula is long.
deparse returns a string for each line that it thinks there should be. So the
paste command ensures that we have just a single string.

After that, this starts with a call to find.I.of of page 280, which returns a
matrix of the start and end of each call to I (if any). When there are instances
of I to handle, then each of them is evaluated in the appropriate frame using the
eval-parse-text idiom, and put into variables in frame 1. The call to sys.nframe
makes sure that there will not be collisions in the names if there are nested
occurrences of this code. The cterm string is broken into pieces, and the names
for the evaluated I expressions are substituted in. This last operation could be
abstracted into a separate function, but I’m not sure that it would be especially
useful.

Now we can try our example again.

> mathgraph(~ jj1 * I(jj1+1))
[1] node 1 <-> node 2
[2] node 2 <-> node 2
[3] node 3 <-> node 2
[4] node 1 <-> node 3
[5] node 2 <-> node 3
[6] node 3 <-> node 3
[7] node 1 <-> node 4
[8] node 2 <-> node 4
[9] node 3 <-> node 4

class: mathgraph
> mathgraph(~ I(jj1*2) / I (jj1+3) + jj1 / I(jj1+1))
[1] node 2 <-> node 4
[2] node 4 <-> node 5
[3] node 6 <-> node 6
[4] node 1 <-> node 2
[5] node 2 <-> node 3
[6] node 3 <-> node 4

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 303

class: mathgraph

It is sensible to name edges as well as nodes. The names of the mathgraph
object is natural for this, given the structure. The names for the class can just
be the row names of the matrix underlying the object.

"names.mathgraph"<-
function(x)
{

dimnames(unclass(x))[[1]]
}
"names<-.mathgraph"<-
function(x, value)
{

cl <- class(x)
x <- unclass(x)
dimnames(x)[[1]] <- value
class(x) <- cl
x

}

This makes the assignment form very easy as well. At this point, the unclassing
is not necessary since there are no mathgraph methods for dimnames. However,
we don’t want our functions to break if code is added later.

We want the length of the graph to be the number of edges contained in the
graph.

"length.mathgraph"<-
function(x)
{

x <- unclass(x)
if(length(x))

dim(x)[1]
else 0

}

A simpler way to write this function would be to replace the if statement by
the line:

length(x)/2

However, it might be slightly safer and not much less efficient to leave it as is.

Subscripting is a very powerful feature of S, and we want subscripting to
work for any class that we create if at all sensible. For graphs that means
subscripting on the edges.

S Poetry c©1998 Patrick J. Burns v1.0



304 CHAPTER 13. FORMULAS

"[.mathgraph"<-
function(x, i)
{

cl <- class(x)
x <- unclass(x)
xdir <- attr(x, "directed")
if(is.character(i))

names(xdir) <- dimnames(x)[[1]]
x <- x[i, , drop = F]
attr(x, "directed") <- xdir[i]
class(x) <- cl
x

}

This is easy to write since we inherit the subscripting from matrices. Not in
the technical sense since matrices are not object-oriented in version 3, but it is
inheritance nonetheless.

Note the drop = F, we don’t want to lose the matrixness in case the result
has only one edge.

The assignment form of subscripting follows the same pattern.

"[<-.mathgraph"<-
function(x, i, value)
{

if(!inherits(value, "mathgraph"))
stop("need mathgraph on right-hand side")

cl <- class(x)
x <- unclass(x)
value <- unclass(value)
ilen <- length(i)
if(is.logical(i))

ilen <- sum(rep(i, length = nrow(x)))
if(nrow(value) != ilen)

stop("replacement value not correct length")
xdir <- attr(x, "directed")
if(is.character(i))

names(xdir) <- dimnames(x)[[1]]
x[i, ] <- value
xdir[i] <- attr(value, "directed")
attr(x, "directed") <- xdir
class(x) <- cl
x

}

The lines involving ilen are to avoid the problem described on page 122.
Let’s see how they work.

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 305

> jjmg2
d node 4 <-> node 1
e node 5 <-> node 1
f node 6 <-> node 1
g node 2 <-> node 4
h node 3 <-> node 4
i node 2 <-> node 6
j node 3 <-> node 6

class: mathgraph
> jjmg2[2:3]
e node 5 <-> node 1
f node 6 <-> node 1

class: mathgraph
> jjmg2[c("f","j","f")]
f node 6 <-> node 1
j node 3 <-> node 6
f node 6 <-> node 1

class: mathgraph
> jjmg2[c(F,T)]
e node 5 <-> node 1
g node 2 <-> node 4
i node 2 <-> node 6

class: mathgraph

So subscripting is very similar to subscripting a typical vector. Replacement is
also similar to the case with vectors.

> jjmg2[2:4] <- jjmg1
> jjmg2
d node 4 <-> node 1
e node 1 <-> node 2
f node 2 <-> node 3
g node 3 <-> node 4
h node 3 <-> node 4
i node 2 <-> node 6
j node 3 <-> node 6

class: mathgraph

Sometimes we want to deal only with directed graphs. We can create a
generic function to turn non-directed graphs into directed ones. So the result
looks like:

S Poetry c©1998 Patrick J. Burns v1.0



306 CHAPTER 13. FORMULAS

> jjmg1
a node 1 <-> node 2
b node 2 <-> node 3
c node 3 <-> node 4

class: mathgraph
> alldirected(jjmg1)
a node 1 -> node 2
b node 2 -> node 3
c node 3 -> node 4
a node 2 -> node 1
b node 3 -> node 2
c node 4 -> node 3

class: mathgraph

The default method merely creates an error.

"alldirected.default"<-
function(x, ...)
{

stop("do not know how to handle")
}

In a sense this is redundant since an error will occur if the default method
is needed, but doesn’t exist. However, when it is written, it means that the
programmer has thought over the situation.

Here is the method for mathgraph.

"alldirected.mathgraph"<-
function(x)
{

dir <- attr(x, "directed")
if(all(dir))

return(x)
x <- unclass(x)
ans <- rbind(x, x[!dir, 2:1])
attr(ans, "directed") <- rep(T, nrow(ans))
class(ans) <- "mathgraph"
ans

}

This takes all of the input edges and adds another edge in reverse order for each
undirected edge.

Note that the class of the output is not guaranteed to be the same as that of
the input. This function could be used by a special type of mathematical graph

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 307

that inherits from mathgraph. By not passing the class of the input to the
output, we are making sure that we don’t end up with an object that doesn’t
make sense—it could be that that special class of graph doesn’t make sense
for directed graphs. It is subtle distinctions like this that are the hardest part
of object-oriented programming. Whether you have a monument or a pile of
rubble can depend on getting these decisions right.

We can combine mathgraph objects by calling mathgraph again.

> jjmg3 <- jjmg1
> jjmg4 <- jjmg2
> class(jjmg3) <- c("subA", "mathgraph")
> class(jjmg4) <- c("subA", "mathgraph")
> mathgraph(~ jjmg3 + jjmg4)
a node 1 <-> node 2
b node 2 <-> node 3
c node 3 <-> node 4
d node 4 <-> node 1
e node 1 <-> node 2
f node 2 <-> node 3
g node 3 <-> node 4
h node 3 <-> node 4
i node 2 <-> node 6
j node 3 <-> node 6

class: mathgraph

But it is more convenient to have a method for the c function. This also allows
us to retain subclasses of mathgraph if appropriate.

> c(jjmg4, jjmg3)
d node 4 <-> node 1
e node 1 <-> node 2
f node 2 <-> node 3
g node 3 <-> node 4
h node 3 <-> node 4
i node 2 <-> node 6
j node 3 <-> node 6
a node 1 <-> node 2
b node 2 <-> node 3
c node 3 <-> node 4

class: subA mathgraph
> c(jjmg1, jjmg3)
a node 1 <-> node 2
b node 2 <-> node 3

S Poetry c©1998 Patrick J. Burns v1.0



308 CHAPTER 13. FORMULAS

c node 3 <-> node 4
a node 1 <-> node 2
b node 2 <-> node 3
c node 3 <-> node 4

class: mathgraph
> jjmg5 <- jjmg1
> class(jjmg5) <- c("subB", "mathgraph")
> c(jjmg5, jjmg3)
a node 1 <-> node 2
b node 2 <-> node 3
c node 3 <-> node 4
a node 1 <-> node 2
b node 2 <-> node 3
c node 3 <-> node 4

class: mathgraph

So the class of the result of a call to c.mathgraph will be the most specific
set of classes that all of the inputs have in common. For many types of object
this is the proper behavior. But it isn’t necessarily in this case—if the subclass
of mathgraph represents trees, the combination of two or more trees doesn’t
guarantee that the result is a tree.

The definition of the c method is:

"c.mathgraph"<-
function(...)
{

dots <- list(...)
the.class <- commontail(lapply(dots, class))
if(!match("mathgraph", the.class, nomatch = 0)

)
stop("not all mathgraph objects")

amat <- do.call("rbind", dots)
adir <- unlist(lapply(dots, function(x)
attr(x, "directed")))
if(dim(amat)[1] != length(adir))

stop("garbled object")
attr(amat, "directed") <- adir
class(amat) <- the.class
amat

}

There is a check at the end to make sure that the directed attribute matches
the rest of the object. Without the check, there is the possibility of trouble that
will be hard to track down.

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 309

We wouldn’t mind having an optional argument to determine how to treat
the class, but version 3 (at least) of S won’t allow it (the default method of c
gets used when the optional argument is in the call).

The mechanism that decides what the class resulting from c.mathgraph
should be is the commontail function. Its definition is:

> commontail
function(x)
{

the.lens <- unlist(lapply(x, length))
min.len <- min(the.lens)
if(min.len == 0)

return(NULL)
ans <- NULL
x <- lapply(x, rev)
for(i in 1:min.len) {

this.ans <- unique(unlist(lapply(x,
function(y, i)

y[i], i = i)))
if(length(this.ans) == 1) {

ans <- c(this.ans, ans)
}
else {

break
}

}
ans

}

You’ll notice that lapply plays prominently in this function. Once we know
that there is really some work to do, the order is reversed in each component
to make it easier. Inside the for loop there is a decision based on there being
a unique element in all of the components.

If we don’t want to allow edges of the same type between the same nodes,
then we can use unique.mathgraph.

"unique.mathgraph"<-
function(x)
{

dir <- attr(x, "directed")
cl <- class(x)
x <- unclass(x)
xdup <- duplicated(paste(x[, 1], x[, 2], dir))
x <- x[!xdup, , drop = F]
dir <- dir[!xdup]

S Poetry c©1998 Patrick J. Burns v1.0



310 CHAPTER 13. FORMULAS

attr(x, "directed") <- dir
class(x) <- cl
x

}

This uses the usual trick of unique which is to delete duplicated items.

The sort.mathgraph function makes it easier to look at printed graphs.
Note that sort is not generic in (at least) lots of versions, so you will probably
need to type the full name.

"sort.mathgraph"<-
function(x, nodes = T, edges = T)
{

dir <- attr(x, "directed")
cl <- class(x)
x <- unclass(x)
if(nodes && !all(dir)) {

x[!dir, ] <- stable.apply(x[!dir, ,
drop = F], 1, sort)

}
if(edges) {

ord <- order(x[, 1], x[, 2])
x <- x[ord, ]
attr(x, "directed") <- dir[ord]

}
class(x) <- cl
x

}

Note that unclass is necessary because we are subscripting in the sense of the
matrix underlying the mathgraph object, not in the sense of subscripting the
edges.

This sort routine allows both sorting of the nodes within an undirected edge,
and sorting of the edges.

One useful representation of mathematical graphs is an adjacency matrix.
This is a square matrix in which the dimension is the number of nodes. There
is a “1” in location i, j if there is an edge from node i to node j. So if all of the
edges are undirected, then the matrix is symmetric.

Here’s a function to transform a mathgraph object into the equivalent adja-
cency matrix.

"adjamat.mathgraph"<-
function(x, general = F)
{

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 311

x <- unclass(x)
xdir <- attr(x, "directed")
ischar <- is.character(x)
if(ischar) {

nnam <- unique(x)
nnode <- length(nnam)
has.names <- T

}
else {

if(!is.numeric(x))
stop("nodes must be character or numeric")

nnode <- max(x)
nnam <- paste("node", 1:nnode)
has.names <- F

}
ans <- array(0, c(nnode, nnode), list(nnam,

nnam))
if(ischar) {

dx <- dim(x)
x <- match(x, nnam)
dim(x) <- dx

}
ans[x] <- 1
if(any(!xdir))

ans[x[!xdir, 2:1]] <- 1
if(general) {

stop("general version not implemented")
}
attr(ans, "call") <- match.call()
attr(ans, "has.names") <- has.names
class(ans) <- "adjamat"
ans

}

Making the function above a method for a generic function is sensible.

"adjamat"<-
function(x, ...)
UseMethod("adjamat")

An example where the nodes are character is:

> adjamat(mathgraph(~ state.name[1:3]/state.name[2:4]))
Alabama Alaska Arizona Arkansas

Alabama 0 1 0 0
Alaska 1 0 1 0

S Poetry c©1998 Patrick J. Burns v1.0



312 CHAPTER 13. FORMULAS

Arizona 0 1 0 1
Arkansas 0 0 1 0
attr(, "call"):
adjamat.mathgraph(x = mathgraph( ~ state.name[1:3]/

state.name[2:4]))
attr(, "has.names"):
[1] T
attr(, "class"):
[1] "adjamat"

Another representation of a graph is an incidence matrix. This matrix has
as many rows as nodes in the graph, and the number of columns is equal to the
number of directed edges plus twice the number of undirected edges.

Incidence matrices have an advantage over adjacency matrices in that the
latter destroy information about the edges—we can’t retain the names of the
edges in an adjacency matrix without essentially keeping the original mathgraph
object. However, there are typically more edges than nodes in a graph, so inci-
dence matrices are usually going to be bigger than adjacency matrices. Neither
are very frugal with space.

Here is the function to transform a mathgraph object into an incidence
matrix. This is simplified by taking out the code that makes sure that loops (an
edge that begins and ends on the same node) behave properly. As is common,
an unimportant case like this involves a major part of the function.

"incidmat.mathgraph"<-
function(x, expand = T, general = F)
{

x <- unclass(x)
xdir <- attr(x, "directed")
nedge <- dim(x)[1]
eseq <- 1:nedge
cnam <- dimnames(x)[[1]]
has.names <- c(nodes = is.character(x), edges

= T)
if(!length(cnam)) {

has.names["edges"] <- F
cnam <- paste(ifelse(xdir, "arc",

"edge"), eseq)
}
ischar <- is.character(x)
if(ischar) {

nnam <- unique(x)
nnode <- length(nnam)
dx <- dim(x)
x <- match(x, nnam)

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 313

dim(x) <- dx
}
else {

if(!is.numeric(x))
stop("nodes must be character or numeric")

nnode <- max(x)
nnam <- paste("node", 1:nnode)

}
loops <- x[, 1] == x[, 2]
if(expand && !all(xdir)) {

cnam <- rep(cnam, 2 - xdir)
ans <- array(0, c(nnode, length(cnam)),

list(nnam, cnam))
reseq <- match(eseq, rep(eseq, 2 -

xdir))
ans[cbind(x[, 2], reseq)] <- -1
ans[cbind(x[, 1], reseq)] <- 1
ans[cbind(x[!xdir, 1], reseq[!xdir] +

1)] <- -1
ans[cbind(x[!xdir, 2], reseq[!xdir] +

1)] <- 1
}
else {

ans <- array(0, c(nnode, nedge), list(
nnam, cnam))

ans[cbind(x[, 1], eseq)] <- 1
ans[cbind(x[, 2], eseq)] <- ifelse(

xdir, -1, 1)
}
attr(ans, "has.names") <- has.names
attr(ans, "call") <- match.call()
class(ans) <- "incidmat"
ans

}

After some initial bureaucracy, the work really gets underway in the if(expand).
Expanding means that undirected edges are broken into two directed edges—so
cnam is replicated accordingly. The reseq object is the indices corresponding
to the first column representing each edge. This is then used to put values in
the appropriate places, using a matrix as the object inside the subscripts. The
else clause is similar.

As stated earlier, this listing leaves out how loops are handled—not because
it is hard, but because it is a lot of code for not much gain. My first attempt
at this function tried to be clever, and handle loops along with everything else
in only a couple more lines than you see here. The problem with that was that
it didn’t work for all cases.

S Poetry c©1998 Patrick J. Burns v1.0



314 CHAPTER 13. FORMULAS

So there are two traps to fall into:

• You can subscribe always to cleverness, in which case your code may have
surprising bugs. Attempts to fix these bugs may lead to further knots of code
that can easily create new bugs.

• You can avoid cleverness, thus making code that is long, tedious, and perhaps
inefficient. As more functionality is needed, the code gets ever longer, because
simple solutions are hidden in the volumes of code.

Don’t do either.

The incidmat function is generic, we call it to use the incidmat.mathgraph
function.

> incidmat(mathgraph(~ 1:3/2:4))
edge 1 edge 1 edge 2 edge 2 edge 3 edge 3

node 1 1 -1 0 0 0 0
node 2 -1 1 1 -1 0 0
node 3 0 0 -1 1 1 -1
node 4 0 0 0 0 -1 1
attr(, "has.names"):
nodes edges

F F
attr(, "call"):
incidmat.mathgraph(x = mathgraph( ~ 1:3/2:4))
attr(, "class"):
[1] "incidmat"
> incidmat(mathgraph(~ 1:3/2:4), ex=F)

edge 1 edge 2 edge 3
node 1 1 0 0
node 2 1 1 0
node 3 0 1 1
node 4 0 0 1
attr(, "has.names"):
nodes edges

F F
attr(, "call"):
incidmat.mathgraph(x = mathgraph( ~ 1:3/2:4), expand = F)
attr(, "class"):
[1] "incidmat"

Mathematical graphs are built not for their own sake, but to learn things
about them. For example, we may be interested in a path from one node to
some other node. The getpath.adjamat function does this when the graph is
represented by an adjacency matrix. This is very similar to getpath.incidmat
which is shown here.

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 315

"getpath.incidmat"<-

function(x, start, end)

{

if(start == end)

return(mathgraph())

x <- unclass(x)

dircheck <- rep(1, dim(x)[1]) %*% x

if(any(dircheck))

stop("need matrix for directed graph")

has.names <- attr(x, "has.names")

if(has.names["edges"])

enames <- dimnames(x)[[2]]

else enames <- NULL

if(has.names["nodes"])

node.names <- dimnames(x)[[1]]

else node.names <- NULL

if(is.character(c(end, start))) {

start <- match(start, node.names, nomatch = NA)

end <- match(end, node.names, nomatch = NA)

bad.in <- c("start", "end")[is.na(c(start, end))]

if(length(bad.in))

stop(paste(paste(bad.in, collapse = " and "),

"not right"))

}

tset <- start

prev <- 0

edges <- 0

unchecked <- T

nseq <- 1:dim(x)[1]

eseq <- 1:dim(x)[2]

repeat {

this.index <- (1:length(unchecked))[unchecked][1]

newe <- eseq[x[tset[this.index], ] > 0.5]

if(length(newe)) {

newn <- row(x[, newe, drop = F])[as.vector(x[, newe] <

-0.5

)]

newt <- !duplicated(newn)

newn <- newn[newt]

newe <- newe[newt]

newt <- match(newn, tset, nomatch = 0) == 0

newn <- newn[newt]

newe <- newe[newt]

}

else newn <- NULL

unchecked[this.index] <- F

if(n <- length(newn)) {

if(endind <- match(end, newn, nomatch = 0)) {

# have a path

tset <- c(tset[!unchecked], end)

S Poetry c©1998 Patrick J. Burns v1.0



316 CHAPTER 13. FORMULAS

prev <- c(prev[!unchecked], tset[this.index])

edges <- c(edges[!unchecked], newe[endind])

pseq <- 1:length(tset)

path <- this.index <- length(tset)

this.node <- end

while(prev[this.index] != start) {

this.index <- pseq[tset == prev[this.index]]

path <- c(this.index, path)

}

if(has.names["nodes"]) {

ans <- mathgraph( ~ node.names[prev[path]]/

node.names[tset[path]], dir = T)

}

else {

ans <- mathgraph( ~ prev[path]/tset[path],

dir = T)

}

if(has.names["edges"]) {

names(ans) <- enames[edges[path]]

}

return(ans)

}

tset <- c(tset, newn)

edges <- c(edges, newe)

prev <- c(prev, rep(tset[this.index], n))

unchecked <- c(unchecked, rep(T, n))

}

if(!any(unchecked))

return(NULL)

}

}

By seeing a repeat loop in which there is a great deal of creating and
enlarging objects, you might have the idea that S is not the ideal place for this
code. You’d be right. A C implementation is going to be miles more efficient
than the S code, however, it will take substantially longer to code also. A
good implementation would have getpath.mathgraph pass the matrix of the
mathgraph object down into C to do the work and pass the answer back, at
which point S would construct the appropriate object to return. The current
getpath.mathgraph makes an incidence matrix of the graph and then uses the
incidmat method of getpath.

Here is getpath in action.

> jjmgs2 <- mathgraph(~ state.name[1:3]*state.name[2:4] +
+ state.name[22:23]*state.name[24:25] +
+ state.name[2]/state.name[23], dir=T)
> getpath(jjmgs2, "Alabama", "Missouri")
[1] Alabama -> Alaska

S Poetry c©1998 Patrick J. Burns v1.0



13.3. MATHEMATICAL GRAPHS 317

[2] Alaska -> Minnesota
[3] Minnesota -> Missouri

class: mathgraph

Of course it is natural to think of mathematical graphs visually, which means
that you should be able to plot them. Here is a quick and decidedly dirty plot
method for mathgraph objects.

"plot.mathgraph"<-
function(x, ...)
{

x <- unclass(x)
xdir <- attr(x, "directed")
if(ischar <- is.character(x)) {

node.names <- unique(x)
maxx <- length(node.names)
dx <- dim(x)
x <- match(x, node.names)
dim(x) <- dx

}
else {

maxx <- max(x)
node.names <- as.character(1:maxx)

}
px <- cos((2 * 0:(maxx - 1) * pi)/maxx)
py <- sin((2 * 0:(maxx - 1) * pi)/maxx)
plot(px, py, axes = F, xlab = "", ylab = "",

xlim = c(-1.04, 1.04), ylim = c(-1.04,
1.04), ...)

box()
px <- 0.98 * px
py <- 0.98 * py
if(!all(xdir))

segments(px[x[!xdir, 1]], py[x[!xdir,
1]], px[x[!xdir, 2]], py[x[!
xdir, 2]])

if(any(xdir))
arrows(px[x[xdir, 1]], py[x[xdir, 1]],

px[x[xdir, 2]], py[x[xdir, 2]]
)

text(px * 1.07, py * 1.07, node.names)
invisible()

}

S Poetry c©1998 Patrick J. Burns v1.0



318 CHAPTER 13. FORMULAS

13.4 Things to Do

There is a bug in the version of unique.mathgraph listed on page 309—trust
me, you shouldn’t trust me. What is the bug? How would you fix it?

Write adjamat.incidmat and incidmat.adjamat.

Is subscripting feasible for classes adjamat and incidmat?

Are there operations that should be added to the formulas for mathgraph? How
should adjacency and incidence matrix representations be coerced to mathgraph
objects? What other additions should be made to the mathgraph implementa-
tion?

In many applications the edges of a graph have a capacity—for example, a
telephone system. Create a new class that inherits from mathgraph that has
capacities for the edges.

Write a plot.mathgraph that does what we really want to happen. Can you
allow the user to have control over the exact output?

Write a suite of functions to perform various operations with mathematical
graphs. That is, functions similar in spirit to getpath. How do you test these
functions?

Write a function that generates random graphs.

Write a function that can benefit from having at least one argument be a for-
mula. What differences would there be in an implementation without formulas?

13.5 Further Reading

A book on mathematical graphs is Chachra, Ghare and Moore (1979) Applica-
tions of Graph Theory Algorithms.

S Poetry c©1998 Patrick J. Burns v1.0



Chapter 14

Functions

This chapter concentrates on functions that have functions as arguments, or
that return functions.

14.1 Numerical Integration

Numerical integration (also known as quadrature) is often useful. The following
function performs contour integrals in the complex plane.

"fjjline.integral"<-
function(FUN, POINTS, EVALS = 100, ...)
{

n <- length(POINTS)
if(n < 2)

stop("POINTS must have length at least 2")
if(is.character(FUN))

FUN <- get(FUN, mode = "function")
ans <- 0
for(i in 2:n) {

this.seq <- seq(POINTS[i - 1], POINTS[
i], length = EVALS)

this.ans <- FUN(this.seq, ...)
ans <- ans + (sum(this.ans) - 0.5 *

sum(this.ans[c(1, EVALS)])) * (
this.seq[2] - this.seq[1])

}
ans

}

This function takes a function, a vector of points that are the vertices of the
contour along which the integration takes place, and the number of function

319



320 CHAPTER 14. FUNCTIONS

evaluations to do in each segment of the contour. Additional arguments for the
function being integrated are also accepted. The names of the arguments to
fjjline.integral are all in upper case so that their names will not interfere
with the names of arguments of the function being integrated.

The method of integration is quite naive—in a closed contour like the exam-
ple below, each point that is evaluated is given the same weight.

> fjjline.integral(function(z) 1/z, complex(re=c(1,1,-1,-1,1),
+ im=c(-1,1,1,-1,-1)))
[1] 1.25601e-16+6.283049i
> pi*2i
[1] 0+6.283185i

From theory we know that the true value of this integral is 2πi so we can see
how close the numerical integration is to the right answer—it seems to be trying
to get it right, but is not terribly accurate.

Now try another integral for which we know the correct answer.

> fjjline.integral(function(z) 1, complex(re=c(1,2),
+ im=c(-1,1)))
[1] NA

This time we are met with failure. The problem is that the integrand is required
to be vectorized, and the function in this example is not.

With this experience in hand, we can attempt a better version. Not wanting
to appear naive, we call the method in the previous version the “trapezoid”
method.

"line.integral"<-
function(FUN, POINTS, EVALS = 100, METHOD = "simpson",

...)
{

METHOD <- unabbrev.value(METHOD, c("trapezoid",
"simpson"))

n <- length(POINTS)
if(n < 2)

stop("POINTS must have length at least 2")
switch(METHOD,

simpson = {
# want odd number of evaluation points

if(EVALS %% 2 == 0) EVALS <-
EVALS + 1

}
)

if(is.character(FUN))
FUN <- get(FUN, mode = "function")

S Poetry c©1998 Patrick J. Burns v1.0



14.1. NUMERICAL INTEGRATION 321

ans <- 0
for(i in 2:n) {

this.seq <- seq(POINTS[i - 1], POINTS[
i], length = EVALS)

this.ans <- FUN(this.seq, ...)
if(length(this.ans) != EVALS)

stop("FUN not properly vectorized")
ans <- ans + switch(METHOD,

trapezoid = {
(sum(this.ans) - 0.5 *
sum(this.ans[c(1,
EVALS)])) * (
this.seq[2] -
this.seq[1])

}
,
simpson = {

sum(this.ans * c(1,
rep(c(4, 2), length
= EVALS - 2), 1))/3 *
(this.seq[2] -
this.seq[1])

}
)

}
ans

}

The result of both of the previous examples is now much improved.

> line.integral(function(z) 1/z, complex(re=c(1,1,-1,-1,1),
+ im=c(-1,1,1,-1,-1)))
[1] 1.480297e-16+6.283185i
> pi * 2i
[1] 0+6.283185i
> line.integral(function(z) 1, complex(re=c(1,2),
+ im=c(-1,1)))
Error in line.integral(function(z): FUN not properly

vectorized
Dumped

Note that the check on vectorization is not foolproof—if you use max where you
should use pmax, for instance, the function can give answers that are the correct
length but are wrong.

Real-valued integrations can be done by both line.integral and the S-
PLUS function integrate, so the results can be compared. In the following

S Poetry c©1998 Patrick J. Burns v1.0



322 CHAPTER 14. FUNCTIONS

case, we are subtracting a very accurate way of evaluating a value from the
numerical integration.

> integrate(dnorm, -1, 1)$integral - diff(pnorm(c(-1,1)))
[1] -2.220446e-16
> line.integral(dnorm, c(-1, 1), EV=5000) - diff(pnorm(c(-1,1)))
[1] -7.249756e-14

Even with a lot of evaluations, Simpson’s method is significantly less accurate
than the adaptive technique that integrate employs. However, line.integral
takes only about half as much time as integrate for this problem.

> p.unix.time(for(i in 1:100) line.integral(dnorm,
+ c(-1, 1), EV=5000))
comp time clock time memory

6.89 7 1763672
> p.unix.time(for(i in 1:100) integrate(dnorm, -1, 1))
comp time clock time memory

12.85 13 2511336

The difference in both accuracy and computation time will vary from problem
to problem—my suspicion is that this probably overstates the time advantage
of line.integral for the typical problem.

In applications where speed is more important than accuracy, it could be
profitable to substitute line.integral for integrate. However, if the inte-
grand is not nicely behaved, then integrate is likely to do much better.

14.2 Interpolation

Function interpolation is useful when it is expensive to evaluate the function.
The strategy is to evaluate the function exactly at a few points, and then to
approximate the function at other points within the interval in which the exact
values are known.

One of the better methods is Lagrange interpolation. If we know the value
of function f at n points xi, then the Lagrange interpolation formula for the
approximating function f̃ is

f̃(x) =
n∑
k=1

lk(x)f(xk) (14.1)

where

lk(x) =

∏
i 6=k (x− xi)∏
i 6=k (xk − xi)

(14.2)

S Poetry c©1998 Patrick J. Burns v1.0



14.2. INTERPOLATION 323

To get a function that interpolates for the sine function we need to start with
a vector of x-values and the sine of those values. The next task is to translate
Lagrange’s formula into S. First we get the known values:

> jjsx <- seq(0, pi/2, len=5)
> jjsy <- sin(jjsx)

Then we write the function to do interpolation with them:

function(x)
{

x.know <- jjsx
y.know <- jjsy
if(length(x) != 1)

stop("x must have length 1")
if(x < min(x.know) || x > max(x.know))

stop("x not in interval")
tab <- outer(x.know, x.know, "-")
diag(tab) <- 1
den <- apply(tab, 1, prod)
tab <- outer(rep(x, length(x.know)), x.know,

"-")
diag(tab) <- 1
num <- apply(tab, 1, prod)
sum((y.know * num)/den)

}

Obviously we don’t really care about having a function that approximates the
sine—S already has a function that approximates the sine very well. What we
do want is a way of creating an S function that approximates a function of
our choice. The following function takes a vector of x values and a vector of
corresponding values of the mathematical function of interest and returns an S
function that is the Lagrange interpolation of the data.

"fjjinterpolator.lagrange"<-
function(x, y)
{

if(length(x) != length(y))
stop("x and y must be the same length")

ans <- function(z)
{
}
body <- expression(if(length(z) != 1) stop(

"z must have length 1"), NULL,
NULL, NULL, NULL, sum(y.den * apply(
tab, 1, prod)))

mode(body) <- "{"

S Poetry c©1998 Patrick J. Burns v1.0



324 CHAPTER 14. FUNCTIONS

body[[2]] <- substitute(if(z < minx || z >
maxx) stop("z not in interval of known x values"

), list(minx = min(x), maxx =
max(x)))

tab <- outer(x, x, "-")
diag(tab) <- 1
den <- apply(tab, 1, prod)
body[[3]] <- call("assign", "y.den", y/den)
body[[4]] <- substitute(tab <- outer(rep(z,

xlen), x, "-"), list(xlen = length(x),
x = x))

body[[5]] <- parse(text = "diag(tab) <- 1")[[1
]]

ans[[length(ans)]] <- body
ans

}

The result of this function will be a function of one argument, so the ans variable
is assigned a one-argument function—the argument will be called z. What the
function actually does comes later. The start of this is to create body that is
an expression of the correct length and has a couple of the commands filled in.
Then body is coerced to be of mode “brace”—this is the mode we want it to
end up being, and mode expression has exhausted its usefulness at this point.
Skipping to the end, body is attached to ans and ans is returned. Body my
house my horse my hound 37

In the middle of the function there are three methods of adding commands
to body. substitute provides very useful functionality—it takes an expression
as its first argument and a named list as its second. Values of variables that are
in the list are substituted into the expression; other names are left as is. When
a command is to be created and there is nothing to substitute in, then you can
use call, or you can use the text argument in parse.

Here is the result with the sine data.

> fjjinterpolator.lagrange(jjsx, jjsy)
function(z)
{

if(length(z) != 1)
stop("z must have length 1")

if(z < 0 || z > 1.5707963267949)
stop("z not in interval of known x values")

assign("y.den", c(0, -2.68193882509428,
7.43336516385593, -6.47477308499758,
1.75206097146613))

tab <- outer(rep(z, 5), c(0, 0.392699081698724,
0.785398163397448, 1.17809724509617,
1.5707963267949), "-")

S Poetry c©1998 Patrick J. Burns v1.0



14.2. INTERPOLATION 325

diag(tab) <- 1
sum(y.den * apply(tab, 1, prod))

}

The major shortcoming of this is that it is not vectorized. So we go to work
and come up with a function to interpolate sine that is vectorized.

function(z)
{

out <- (z < min(jjsx) | z > max(jjsx))
z[out] <- NA
tab <- outer(jjsx, jjsx, "-")
diag(tab) <- 1
den <- apply(tab, 1, prod)
zlen <- length(z)
tab <- outer(array(rep(z, rep(length(den),

zlen)), c(length(den), zlen)), jjsx,
"-")

tab <- aperm(tab, c(1, 3, 2))
tab[row(tab) == col(tab)] <- 1
num <- apply(tab, c(1, 3), prod)
drop(rep(1, length(jjsy)) %*% ((jjsy * num)/

den))
}

The single-value version required outer to create a matrix. This merely adds
another dimension for the values in the input, so now outer creates a three-
dimensional array. Once this function is written and we know that it works, we
can use it as a template.

"interpolator.lagrange"<-
function(x, y)
{

if(length(x) != length(y))
stop("x and y must be the same length")

ans <- function(z)
{
}
body <- expression(zlen <- length(z), NULL,

NULL, z[zout] <- NA, NULL, tabz <-
array(rep(z, rep(ilen, zlen)), c(ilen,
zlen)), NULL, tab <- aperm(tab, c(1, 3,
2)), tab[row(tab) == col(tab)] <- 1,
num <- apply(tab, c(1, 3), prod), ans <-
rep(1, ilen) %*% (y.den * num),
attributes(ans) <- attributes(z), ans)

S Poetry c©1998 Patrick J. Burns v1.0



326 CHAPTER 14. FUNCTIONS

mode(body) <- "{"
body[[2]] <- substitute(ilen <- length.x, list(

length.x = length(x)))
body[[3]] <- substitute(zout <- (z < minx | z >

maxx), list(minx = min(x), maxx = max(
x)))

tab <- outer(x, x, "-")
diag(tab) <- 1
den <- apply(tab, 1, prod)
body[[5]] <- call("assign", "y.den", y/den)
body[[7]] <- substitute(tab <- outer(tabz, x,

"-"), list(x = x))
ans[[length(ans)]] <- body
test <- all.equal(ans(x), y)
if(!is.logical(test) || !test)

stop("function didn’t build correctly")
ans

}

This includes a test at the end to see if the resulting function looks reasonable.
We know that the interpolation should be exact at the input points, and this is
an easy thing to check. When we humans solve a problem, it is good practice to
check if the answer seems sensible. There’s no reason that programs shouldn’t
do the same.

Here we try it out.

> fjjsin.il <- interpolator.lagrange(jjsx, jjsy)
> fjjsin.il
function(z)
{

zlen <- length(z)
ilen <- 5
zout <- (z < 0 | z > 1.5707963267949)
z[zout] <- NA
assign("y.den", c(0, -2.68193882509428,

7.43336516385593, -6.47477308499758,
1.75206097146613))

tabz <- array(rep(z, rep(ilen, zlen)), c(ilen,
zlen))

tab <- outer(tabz, c(0, 0.392699081698724,
0.785398163397448, 1.17809724509617,
1.5707963267949), "-")

tab <- aperm(tab, c(1, 3, 2))
tab[row(tab) == col(tab)] <- 1
num <- apply(tab, c(1, 3), prod)
ans <- rep(1, ilen) %*% (y.den * num)

S Poetry c©1998 Patrick J. Burns v1.0



14.3. GENETIC ALGORITHMS 327

attributes(ans) <- attributes(z)
ans

}

We can see how it does by plotting the error of the Lagrange interpolation and
the error of linear interpolation.

> jjx1 <- seq(0, pi/2, len=200)
> matplot(jjx1, cbind(approx(jjsx, jjsy, xout=jjx1)$y,
+ fjjsin.il(jjx1)) - sin(jjx1), type="l")

Note that you can get terrible performance from interpolation if your func-
tion does not behave the way that the interpolation method presumes of func-
tions. Interpolation is not something to do thoughtlessly.

14.3 Genetic Algorithms

Genetic algorithms are a type of random algorithm that are used for optimiza-
tion (among other things). The basic idea is to have a population of solu-
tions that improves relative to the objective through a “survival of the fittest”
mechanism. Reasons to use a genetic algorithm rather than something like a
Newton-Raphson or conjugate gradient technique are:

• There are multiple local optima.

• The objective function is not differentiable.

• The number of parameters is very large, so gradient techniques are very slow.

As in Hollywood movies, the main ingredients for a genetic algorithm are
sex and violence. There needs to be a mechanism for children to be born based
on a random selection of attributes of members of the population. Then there
needs to be a way to decide who is to live so that the population size remains
constant (or at least relatively constant).

The following function implements a crude genetic algorithm. The basic
form of it, though, resembles many of the algorithms that I use in practice.
Two members of the population are selected at random, a child is created by
mixing the elements from the two parents. The best two of the three survive.
Someone once called this the Oedipus algorithm—kill your father, marry your
mother. If a child survives, then it is “jittered” in an attempt to find a better
solution nearby. This function operates on logical vectors, as traditional genetic
algorithms do.

"fjjgenop1"<-

function(FUN, POP, BIRTHS = 100, JITTERS = 3, PROB = 0.3, MUTATE =

0.02, TRACE = T, ...)

{

S Poetry c©1998 Patrick J. Burns v1.0



328 CHAPTER 14. FUNCTIONS

random.seed <- .Random.seed

if(is.character(FUN))

FUN <- get(FUN)

if(!is.matrix(POP))

stop("bad input for POP")

if(!is.logical(POP))

stop("this is for logical populations only")

popsize <- ncol(POP)

objective <- numeric(popsize)

for(i in 1:popsize) {

objective[i] <- FUN(POP[, i], ...)

}

funevals <- popsize

npar <- nrow(POP)

if(PROB <= 0 || PROB >= 1)

stop("bad value for PROB")

PROB <- c(PROB, 1 - PROB)

if(MUTATE <= 0 || MUTATE >= 1)

stop("bad value for MUTATE")

MUTATE <- c(MUTATE, 1 - MUTATE)

if(TRACE)

cat("objectives are from", min(objective), "to", max(

objective), "\n")

for(i in 1:BIRTHS) {

parents <- sample(popsize, 2, rep = F)

child <- POP[, parents[1]]

cloc <- sample(c(F, T), npar, rep = T, prob = PROB)

if(all(cloc))

cloc[sample(npar, 1)] <- F

else if(all(!cloc))

cloc[sample(npar, 1)] <- T

child[cloc] <- POP[cloc, parents[2]]

child.obj <- FUN(child, ...)

funevals <- funevals + 1

survive <- child.obj < max(objective[parents])

if(TRACE)

cat("parents:", format(objective[parents]),

"child:", format(child.obj), if(

survive) "(improve)", "\n")

if(survive) {

if(objective[parents[1]] > objective[parents[

2]])

out <- parents[1]

else out <- parents[2]

if(TRACE && child.obj < min(objective))

cat("new minimum\n")

POP[, out] <- child

objective[out] <- child.obj

for(i in seq(length = JITTERS)) {

cloc <- sample(c(T, F), npar, rep = T,

S Poetry c©1998 Patrick J. Burns v1.0



14.3. GENETIC ALGORITHMS 329

prob = MUTATE)

if(all(!cloc))

cloc[sample(npar, 1)] <- T

jchild <- child

jchild[cloc] <- !child[cloc]

jchild.obj <- FUN(jchild, ...)

funevals <- funevals + 1

if(jchild.obj < child.obj) {

if(TRACE) {

cat("jitter successful,",

"new objective", jchild.obj,

"\n")

if(jchild.obj < min(objective))

cat(" new minimum\n")

}

POP[, out] <- child <- jchild

objective[out] <- child.obj <-

jchild.obj

}

}

}

}

ord <- order(objective)

list(population = POP[, ord], objective = objective[ord],

funevals = funevals, random.seed = random.seed, call

= match.call())

}

The main purpose for writing this function is to compare how well it does
on one of the problems studied by Jennison and Sheehan (1995). They studied
the simple problem of maximizing

g(x) =
p∑
i=1

aixi xi ∈ {0, 1}

All of the ai are positive so the function is obviously maximized when all of
the xi are 1 (or TRUE in our function). Jennison and Sheehan give the complete
details only for their 20 dimensional problem, so that is the one we’ll use. Here
is the S function to be minimized.

> fjj.jsa20
function(x)
- sum(x * jsa20)
> jsa20
[1] 2.10 1.89 1.03 1.69 1.24 1.02 3.36 1.43 2.15 1.43
[11] 1.54 2.35 2.39 1.12 1.00 3.66 1.09 1.10 3.01 1.18

The following function keeps track of how well fjjgenop1 does on the prob-
lem for a number of evaluations.

S Poetry c©1998 Patrick J. Burns v1.0



330 CHAPTER 14. FUNCTIONS

"fjjgentest1"<-
function(trials = 100, ...)
{

funev <- numbest <- numeric(trials)
for(i in 1:trials) {

this.one <- fjjgenop1(fjj.jsa20,
matrix(sample(c(F, T), rep = T,
400), 20), ...)

funev[i] <- this.one$funeval
numbest[i] <- sum(this.one$popula[, 1])

}
list(funevals = funev, numbest = numbest, call

= match.call())
}

The results look reasonable using the defaults. The first thing to look at is the
number of elements of the best solution that were TRUE in each of the trials. 77
of the 100 evaluations found the correct answer, and only one time did the best
solution contain more than one FALSE.

> table(gentest1.res1$numbest)
18 19 20
1 22 77

> summary(gentest1.res1$funeval)
Min. 1st Qu. Median Mean 3rd Qu. Max.
306 321 330 330 336 351

When jittering is used, the number of function evaluations is random. The
call to summary indicates the distribution of the number of function evaluations
used.

This performance is much better than that reported by Jennison and Shee-
han with the traditional genetic algorithm that they used. The performance of
fjjgenop1 seems adequate to me.

Since the problem is so simple, I hypothesized that the jittering might be
slowing down the algorithm. To test this, I set the number of jitters to zero and
the number of births to 400.

> table(gentest1.res0.4$numbest)
17 18 19 20
3 4 31 62

> summary(gentest1.res0.4$funeval)
Min. 1st Qu. Median Mean 3rd Qu. Max.
420 420 420 420 420 420

The result is worse while using more function evaluations. So jittering is useful
even in this artificially simple problem.

S Poetry c©1998 Patrick J. Burns v1.0



14.3. GENETIC ALGORITHMS 331

The genopt function, listed below, is a more useful function that minimizes
a function via a genetic algorithm. First off, it presumes that the parameters
are real-valued rather than binary—a much more common case. Box constraints
are allowed on the parameters; this is easy to do, and decidedly useful enough

to be worth the effort.

In fjjgenop1 the argument names were all in upper case to avoid conflicts
with additional arguments for the function being optimized. With so many
arguments capitalized, the solution becomes almost as ugly as the problem. The
genopt function has the argument add.args that is expected to be a list of the
additional arguments. This avoids the possibility of name conflicts altogether,
and frees up the three-dots for a different task.

The population argument to genopt can be a matrix whose columns are
each a parameter vector in the initial population, or it can be the result of a
previous call to genopt. In the latter case it is of importance that the function
being optimized is not re-evaluated for the population. Thus, genopt can be
called repeatedly with the population equal to the result of the last call, so the
effect is like asking for a large number of births but getting intermediate results.

Another addition in genopt is a purely random phase. Parameter vectors are
created by some random mechanism that does not care about the parameters
within the population. A parameter vector that has a better objective than the
worst member of the population replaces that member. The improvement in the
population resulting from the random phase can greatly improve the efficacy of
the genetic phase. The creation of the random vectors in genopt is quite ad
hoc—a better method should be used for specific applications.

genopt saves the random seed that it started with, so that the computations
can be reproduced, if desired.

Without further ado, here is the definition of genopt.

"genopt"<-

function(fun, population, lower = - Inf, upper = Inf, scale =

dcontrol["eps"], add.args = NULL, control = genopt.control(

...), ...)

{

random.seed <- .Random.seed

if(is.character(fun))

fun <- get(fun, mode = "function")

fun.args <- c(list(NULL), add.args)

go.rectify <- function(pars, lower, upper)

{

pars[pars < lower] <- lower[pars < lower]

pars[pars > upper] <- upper[pars > upper]

pars

}

if(is.list(population)) {

objective <- population$objective

funevals <- population$funevals

S Poetry c©1998 Patrick J. Burns v1.0



332 CHAPTER 14. FUNCTIONS

population <- population$population

popsize <- ncol(population)

if(is.null(popsize) || length(objective) != popsize)

stop("bad input population")

if(!is.numeric(funevals) || is.na(funevals)) {

funevals <- 0

warning("funevals starting at 0")

}

}

else {

if(!is.matrix(population))

stop("bad input population")

popsize <- ncol(population)

objective <- numeric(popsize)

npar <- nrow(population)

lower <- rep(lower, length = npar)

upper <- rep(upper, length = npar)

if(any(upper < lower))

stop("upper element smaller than lower")

for(i in 1:popsize) {

population[, i] <- fun.args[[1]] <-

go.rectify(population[, i], lower,

upper)

objective[i] <- do.call("fun", fun.args)

}

funevals <- popsize

}

icontrol <- control$icontrol

dcontrol <- control$dcontrol

trace <- icontrol["trace"]

minobj <- min(objective)

npar <- nrow(population)

if(trace) {

cat("objectives go from", format(minobj), "to",

format(max(objective)), "\n")

}

if(icontrol["random.n"]) {

par.range <- apply(population, 1, range)

par.range[2, par.range[2, ] == par.range[1, ]] <-

par.range[2, par.range[2, ] == par.range[1,

]] + dcontrol["scale.min"]

maxobj <- max(objective)

for(i in 1:icontrol["random.n"]) {

fun.args[[1]] <- runif(npar, par.range[1, ],

par.range[2, ])

this.obj <- do.call("fun", fun.args)

if(this.obj < maxobj) {

maxind <- order(objective)[popsize]

population[, maxind] <- fun.args[[1]]

objective[maxind] <- this.obj

S Poetry c©1998 Patrick J. Burns v1.0



14.3. GENETIC ALGORITHMS 333

maxobj <- max(objective)

}

}

if(trace) {

cat("objectives go from", format(minobj),

"to", format(maxobj), "\n")

}

}

njit <- icontrol["jitters.n"]

lower <- rep(lower, length = npar)

upper <- rep(upper, length = npar)

if(any(upper < lower))

stop("upper element smaller than lower")

scale[scale < dcontrol["scale.min"]] <- dcontrol["scale.min"]

scale <- rep(scale, length = npar)

prob <- dcontrol["prob"]

prob <- c(prob, 1 - prob)

maxeval <- icontrol["maxeval"]

for(i in 1:icontrol["births"]) {

if(funevals >= maxeval)

break

parents <- sample(popsize, 2)

child <- population[, parents[1]]

cloc <- sample(c(T, F), npar, rep = T, prob = prob)

if(all(cloc))

cloc[sample(npar, 1)] <- F

else if(all(!cloc))

cloc[sample(npar, 1)] <- T

child[cloc] <- population[cloc, parents[2]]

fun.args[[1]] <- child

child.obj <- do.call("fun", fun.args)

funevals <- funevals + 1

parent.obj <- objective[parents]

survive <- child.obj < max(parent.obj)

if(trace) {

cat(i, "parents:", parent.obj, "child:",

format(child.obj), if(survive)

"(improve)", "\n")

}

if(survive || (child.obj == parent.obj[1] &&

child.obj == parent.obj[2])) {

if(parent.obj[1] > parent.obj[2])

out <- parents[1]

else out <- parents[2]

population[, out] <- child

objective[out] <- child.obj

if(trace && child.obj < minobj) {

minobj <- child.obj

cat("new minimum\n")

}

S Poetry c©1998 Patrick J. Burns v1.0



334 CHAPTER 14. FUNCTIONS

for(i in seq(length = njit)) {

fun.args[[1]] <- jchild <- go.rectify(

rnorm(npar, child, scale), lower,

upper)

jchild.obj <- do.call("fun", fun.args

)

funevals <- funevals + 1

if(jchild.obj < child.obj) {

child <- population[, out] <-

jchild

child.obj <- objective[out] <-

jchild.obj

if(trace) {

cat("jitter successsful:", format(

jchild.obj), "\n")

if(jchild.obj < minobj) {

cat("new minimum\n")

minobj <- jchild.obj

}

}

}

}

}

}

ord <- order(objective)

list(population = population[, ord], objective = objective[

ord], funevals = funevals, random.seed = random.seed,

call = match.call())

}

It would be much nicer if each birth and the jittering were abstracted into
functions. The difficulty with this is how information is to be passed in and out
of the functions.

An important feature of genopt is that it uses the “control” paradigm that
was introduced into S with some of the statistical modeling functions (Cham-
bers and Hastie, 1992). There is a control argument that expects an object
containing a number of items that control the computation. This list can be cre-
ated with a separate function—in this case called genopt.control. Often, as in
genopt, the three-dots of the main function allows individual control arguments
to be given. This is a convenient and powerful convention.

"genopt.control"<-
function(births = 100, random.n = 0, jitters.n = 3,

trace = T, eps = 0.1, prob = 0.3, scale.min =
1e-12, maxeval = Inf)

{
dcon <- c(eps = eps, prob = prob, scale.min =

scale.min)

S Poetry c©1998 Patrick J. Burns v1.0



14.3. GENETIC ALGORITHMS 335

icon <- c(births = births, random.n = random.n,
jitters.n = jitters.n, trace = trace,
maxeval = maxeval)

list(icontrol = icon, dcontrol = dcon)
}

For use within S, the division between integer and floating-point numbers is
unnecessary. However, in C it matters greatly. This function would not need to
change if the optimization were put into C.

The genopt function can be used as a model for a function that specializes
the optimization. Such a function could use genopt.control if no new con-
trol arguments were necessary (unused ones pose no problem). A new control
function would be required if new controls were used.

The Jennison and Sheehan problem can be made a little harder by letting
the parameters be real-valued between 0 and 1, instead of only 0 or 1. Here’s
an approach to solving this problem with genopt. The first command indicates
what the true minimum is.

> -sum(jsa20)
[1] -35.78
> jj1 <- genopt(fjj.jsa20, matrix(runif(400),20), lower=0,
+ upper=1, trace=F)
> summary(jj1$objective)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-31.45 -30.06 -29.32 -29.09 -28.49 -25.32
> jj2 <- genopt(fjj.jsa20, jj1, lower=0, upper=1, trace=F)
> summary(jj2$objective)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-33.72 -33 -32.44 -32.49 -32.08 -31.16
> summary(jj2$population[,1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.7201 0.8724 0.9713 0.9248 1 1
> jj2$funeval
[1] 646

This is obviously harder than the binary problem, but we’re not doing so terrible
with 650 function evaluations.

The problem can be made more realistic by adding a constraint to the prob-
lem. Suppose that we still want to minimize fjj.jsa20 but there is the con-
straint that the sum of the parameters can be no more than 10. This new
problem is known as a knap-sack problem; there is an S function called napsack
for one class of knap-sack problems. An inexact but often effective way of deal-
ing with constraints is to add a penalty to the objective if constraints are
violated.

S Poetry c©1998 Patrick J. Burns v1.0



336 CHAPTER 14. FUNCTIONS

Here is a new function to be optimized that includes a penalty for the con-
straint.

> fjj.jsa20sum
function(x, limit = 10, cost = 2)
{

objective <- - sum(x * jsa20)
violation <- max(0, sum(x) - limit)
objective + violation * cost

}

Naively you may think that the cost parameter should be infinite. An infinite
cost causes a discontinuity, so the cost obviously can’t be infinite when using
this trick with derivative-based optimizers. Genetic algorithms don’t fail on
account of discontinuity, but you still don’t want the cost to be excessively high
because you want to guide the algorithm toward the right place.

Here we see what the true optimum is, and then evaluate how well we are
doing with the constraint and the objective.

> -sum(sort(jsa20)[11:20])
[1] -24.14
> jj3 <- genopt(fjj.jsa20sum, matrix(runif(400),20),
+ lower=0, upper=1, trace=F, random=100)
> apply(jj3$population, 2, sum)
[1] 10.344031 10.250866 10.020323 10.024000 9.676853
[6] 10.319002 10.850953 10.436489 10.074452 11.640020
[11] 10.594859 10.476254 10.747117 9.692068 11.048758
[16] 10.157180 10.057599 11.963033 10.322911 10.842347
> summary(jj3$objective)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-22.1 -21.65 -21.23 -21.24 -20.95 -19.59

At this point the constraint isn’t obeyed very well, but not egregiously violated,
and the objectives aren’t so bad. The default cost is almost surely too small, so
we give a different value of cost to fjj.jsa20sum.

> jj4 <- genopt(fjj.jsa20sum, jj3, lower=0, upper=1,
+ add.arg=list(cost=50), trace=F)
> apply(jj4$population, 2, sum)
[1] 9.934612 9.639238 9.803568 9.894391 9.854145
[6] 10.344031 10.250866 10.020323 9.640379 9.880965
[11] 9.858581 9.731130 10.074452 9.991200 11.640020
[16] 9.979223 10.594859 10.476254 9.819179 10.057599
> summary(jj4$objective)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-22.32 -22.11 -21.62 -21.65 -21.31 -20.84

S Poetry c©1998 Patrick J. Burns v1.0



14.3. GENETIC ALGORITHMS 337

> jj4$funeval
[1] 442

Often a much better solution can be found by inserting into a population the best
solution from each of two or more independent runs of the genetic algorithm.
This is the strategy with jj4 and jj5 that arrives at jj6.

> jj5 <- genopt(fjj.jsa20sum, matrix(runif(400),20),
+ lower=0, upper=1, trace=F, random=100,
+ add.arg=list(cost=50))
> apply(jj5$population, 2, sum)
[1] 9.975258 9.975258 9.871977 9.756353 9.206575
[6] 9.287558 9.808857 9.701156 8.964027 9.923369
[11] 9.538543 9.761804 9.400245 9.392638 9.536091
[16] 9.811276 9.800468 9.985085 9.809348 9.582101
> summary(jj5$objective)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-21.72 -20.51 -19.78 -19.97 -19.24 -18.59
> jjp1 <- cbind(jj4$pop[,1], jj5$pop[,1], matrix(
+ runif(400),20))
> jj6 <- genopt(fjj.jsa20sum, jjp1, lower=0, upper=1,
+ trace=F, random=100, birth=500,
+ add.arg=list(cost=50))
> apply(jj6$population, 2, sum)
[1] 9.899633 9.890572 9.932042 9.881737 9.919993
[6] 9.969054 9.934612 9.785121 9.970647 9.679190
[11] 9.848886 9.852910 9.947428 9.570757 9.961821
[16] 9.961821 9.972682 9.931718 9.876357 9.995824
[21] 9.979015 9.966458
> summary(jj6$objective)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-22.82 -22.33 -22.16 -22.16 -21.92 -21.46

For many applications, S is the wrong place for a genetic algorithm. To be
effective a genetic algorithm requires a great number of function evaluations. If
the function being optimized does not involve heavy computing, then the opti-
mization should be in C or another compiled language. But if each evaluation
will take a long time anyway, then the overhead of the genetic algorithm in S
will be negligible.

The one problem that a genetic algorithm can have is that it doesn’t go to
the optimum. One way this occurs is that the population initially moves well
but too soon everyone in the population is very similar—premature convergence.
Another popular way is for the population not to move much at all. As the pop-
ulation size goes from tiny to huge, you will go from the first of these problems
to the second. So choosing the population size is important—the proper choice
depends on the particular problem and on the use to which the result is put.

S Poetry c©1998 Patrick J. Burns v1.0



338 CHAPTER 14. FUNCTIONS

On one extreme, I’ve chosen a population of size 10 in an application. A
genetic algorithm is used to get a starting point for a derivative-based optimizer
because there are local minima, and because the number of parameters can
be very large, and each function evaluation is reasonably expensive. In cases
where the result needs to be close to the true optimum and the cost of function
evaluations is insignificant in comparison, then a population size of hundreds is
probably not too many. In run-of-the-mill situations, I tend to use population
sizes of 20 to 50, but I have no basis in fact for doing so.

The main thing to get right in a genetic algorithm is the genetics. If what
you are using in the population to represent each solution does not map well into
the objective to be optimized, then the algorithm will be ineffective. One good
reason to use S for genetic algorithms is because S makes it easy to use whatever
is best at representing the solutions. The development of genetic algorithms is
limited primarily by our imaginations.

14.4 Optimization via PORT

The PORT library is some of the best optimization software that is freely avail-
able. This comes out of Bell Labs and was written by David Gay and associates.
Both of the S-PLUS functions nlminb and nlmin are based on PORT routines.

A drawback of these two functions is that they are slow because they use S
functions. The portopt1 and portoptgen functions discussed below provide a
way of optimizing a function written in C or Fortran but getting the results in
S.

Simple interface

The portopt1 function allows you to minimize a C or Fortran function that
has just two arguments, the vector of parameters over which the optimization
occurs and the length of the vector. This is not terribly useful functionality, but
it gives us a foothold on the problem.

"portopt1"<-

function(fun.address, start, lower = - Inf, upper = Inf, scale = 1,

control = portopt.control(...), ...)

{

if(fun.address == 0)

stop("symbol not loaded")

p <- length(start)

if(length(scale) != 1 && length(scale) != p)

stop("bad length for ’scale’ argument")

if(any(scale) <= 0)

stop("nonpositive scale vector")

scale <- rep(scale, length = p)

S Poetry c©1998 Patrick J. Burns v1.0



14.4. OPTIMIZATION VIA PORT 339

if((length(lower) != 1 && length(lower) != p) || (length(

upper) != 1 && length(upper) != p))

stop("bad length for lower or upper")

big <- 1e+30

lower[lower < - big] <- - big

upper[upper > big] <- big

lower <- rep(lower, length = p)

upper <- rep(upper, length = p)

if(any(lower > upper))

stop("box constraints are infeasible")

liv <- 59 + p

lv <- 77 + (p * (p + 23))/2

init <- .Fortran("divset",

as.integer(2),

iv = integer(liv),

as.integer(liv),

as.integer(lv),

v = double(lv))[c("iv", "v")]

if(init$iv[1] != 12)

stop("abnormal return from divset")

icontrol <- control$icontrol

init$iv[17:18] <- icontrol[c("eval.max", "iter.max")]

dnam <- c("abs.tol", "rel.tol", "x.tol", "step.min",

"step.max", "sing.step", "sing.tol", "scale.tol",

"scale.mod", "scale.fac", "diff.grad")

dcvec <- control$dcontrol[dnam]

dmiss <- is.na(dcvec)

init$v[c(31:37, 39:42)[!dmiss]] <- dcvec[!dmiss]

names(upper) <- names(start)

limits <- rbind(lower = lower, upper = upper)

storage.mode(limits) <- "double"

ans <- .C("portopt_one_Sp",

as.integer(liv),

as.integer(lv),

iv = as.integer(init$iv),

v = as.double(init$v),

as.integer(icontrol),

objective = double(1),

npar = as.integer(p),

limits = limits,

scale = as.double(scale),

as.integer(fun.address),

parameters = as.double(start))[c("parameters",

"objective", "iv", "limits")]

msg <- switch(ans$iv[1] - 2,

"X convergence",

"relative function convergence",

"both X and relative function convergence",

"absolute function convergence",

"singular convergence",

S Poetry c©1998 Patrick J. Burns v1.0



340 CHAPTER 14. FUNCTIONS

"false convergence",

"function evaluation limit reached",

"iteration limit reached",

stop("invalid output code 11"),

stop("invalid output code 12"),

stop("invalid output code 13"),

stop("LIV is too small"),

stop("LV is too small"),

stop("invalid output code 17"),

stop("negative component in scale vector"),

stop("cannot complete optimization"))

ans$convergence <- msg

ans$call <- match.call()

ans$iv <- NULL

ans

}

This is really a simple function despite its length. It starts out checking for
misspecification of arguments and getting those arguments ready to be used in
the optimization. Then it calls a Fortran function that initializes the two special
arrays for the optimizer, and then changes control arguments as needed. Then
the optimizer is invoked through the call to C, and finally the result is fixed up
for the return.

The novel part is the C code that arranges for the optimization to take place.

#include <S.h>

void

portopt_one_Sp(liv, lv, iv, v, icontrol, objective, npar, limits,

scale, f_addr, par)

long *liv, *lv, *iv, *icontrol, *npar;

double *v, *objective, *limits, *scale, *par;

double (**f_addr)();

{

long i, iter_max = iv[17], trace = icontrol[2], iternum=-1;

if(iter_max) {

F77_CALL(mnb0)(npar, par, scale, limits,

objective, liv, iv, lv, v);

*objective = (**f_addr)(par, npar);

if(is_na(objective, DOUBLE) ||

is_inf(objective, DOUBLE)) {

iv[1] = 1;

}

while(iv[0] < 3 && iternum < iter_max) {

if(iv[30] != iternum) {

iternum = iv[30];

if(trace) {

S Poetry c©1998 Patrick J. Burns v1.0



14.4. OPTIMIZATION VIA PORT 341

printf("iter: %d objective: %g\n",

iternum, *objective);

fflush(stdout);

}

}

F77_CALL(mnb0)(npar, par, scale, limits,

objective, liv, iv, lv, v);

*objective = (**f_addr)(par, npar);

if(is_na(objective, DOUBLE) ||

is_inf(objective, DOUBLE)) {

iv[1] = 1;

}

}

}

*objective = (**f_addr)(par, npar);

}

The first thing you may notice is that the code is complicated by a test to
see if the maximum number of iterations is zero. I’ve found the extra bother
to be well worth it—there are a surprising number of instances in which doing
nothing is desired. The operative part of this function is a while loop that does
four things. It updates the iteration number if necessary and prints the iteration
information if asked to. It then calls the PORT optimizer, the Fortran function
mnb0. Next it calls the function to be optimized with the parameter vector that
the optimizer set. Finally it notifies the optimizer if trouble is afoot.

Perhaps you are puzzled by the declaration:

double (**f_addr)();

The number that is contained in the S vector is the address of the function, that
is, it is a pointer to the function. Whatever S passes into C is a pointer to that
information, so we have a pointer to a pointer to the function. S always thinks
in terms of vectors—if there were addresses for a number of functions contained
in the S vector passed into C, the declaration would remain the same.

portopt1 follows the convention of a control argument that is supplied
by a “something.control” function. The portopt.control function is a little
different in that it uses missing values for some of its defaults because the real
defaults are created elsewhere.

"portopt.control"<-
function(eval.max = 5000, iter.max = 150, abs.tol = NA,

rel.tol = NA, x.tol = NA, step.min = NA,
step.max = NA, sing.step = NA, sing.tol = NA,
scale.tol = NA, scale.mod = NA, scale.fac = NA,
diff.grad = NA, trace = T)

{
icontrol <- c(npar = NA, eval.max = eval.max,

S Poetry c©1998 Patrick J. Burns v1.0



342 CHAPTER 14. FUNCTIONS

iter.max = iter.max, trace = trace)
dcontrol <- c(abs.tol = abs.tol, rel.tol =

rel.tol, x.tol = x.tol, step.min =
step.min, step.max = step.max,
sing.step = sing.step, sing.tol =
sing.tol, scale.tol = scale.tol,
scale.mod = scale.mod, scale.fac =
scale.fac, diff.grad = diff.grad)

list(icontrol = icontrol, dcontrol = dcontrol)
}

The symbol.address function is a slight modification of the is.loaded S-
PLUS function. It returns the addresses of a vector of symbols—zero means
that the symbol is not currently loaded (or you didn’t get the symbol right).

symbol.address
function(symbol)
{

symbol <- as.character(symbol)
.C("S_get_entries",

symbol,
integer(length(symbol)),
length(symbol))[[2]]

}

As a test, I use a computer intensive way of calculating two means. At this
stage of testing, we really do want to know the right answer beforehand.

double

jjtest1(pars, n)

long *n;

double *pars;

{

long i;

double dif, ans=0.0;

static double data[6] = { 3.4, 6.3, 9.2, -.7, 2.1, 8.8};

for(i=0; i < 3; i++) {

dif = data[i] - pars[0];

ans = ans + dif * dif;

}

for(i=3; i < 6; i++) {

dif = data[i] - pars[1];

ans = ans + dif * dif;

}

return(ans);

}

Now compile the code, dyn load it and use it in the optimization function.

S Poetry c©1998 Patrick J. Burns v1.0



14.4. OPTIMIZATION VIA PORT 343

> !Splus COMPILE jjtest1.c
targets= jjtest1.o
make -f /usr/lang/sp/newfun/lib/S_makefile jjtest1.o
cc -c -I${SHOME-‘Splus SHOME‘}/include -O2 jjtest1.c
> dyn.load("jjtest1.o")
> portopt1(symbol.address(symbol.C("jjtest1")), c(0,0))
iter: 0 objective: 218.23
iter: 1 objective: 178.277
iter: 2 objective: 64.48
iter: 3 objective: 64.48
$parameters:
[1] 6.300002 3.400020

$objective:
[1] 64.48

$limits:
[,1] [,2]

lower -1e+30 -1e+30
upper 1e+30 1e+30

$convergence:
[1] "relative function convergence"

$call:
portopt1(fun.address = symbol.address(symbol.C(

"jjtest1")), start = c(0, 0))

> 10.2/3
[1] 3.4
> 18.9/3
[1] 6.3

The answers are correct, and the algorithm converged okay.
If you were paying attention, then you have already chastised me for passing

a pointer for the parameter length in the calls to the function to be optimized
in portopt one Sp. It is true that this is a little unnatural in C, but it allows
Fortran to be used as well as C. Here is the test function translated into Fortran.

function jjtest2(pars, n)

implicit none

integer n

double precision pars(n)

integer i

double precision dif, jjtest2, tdat(6)

tdat(1) = 3.4

tdat(2) = 6.3

S Poetry c©1998 Patrick J. Burns v1.0



344 CHAPTER 14. FUNCTIONS

tdat(3) = 9.2

tdat(4) = -.7

tdat(5) = 2.1

tdat(6) = 8.8

jjtest2 = 0.0

do 10 i=1, 3

dif = tdat(i) - pars(1)

jjtest2 = jjtest2 + dif * dif

10 continue

do 20 i=4, 6

dif = tdat(i) - pars(2)

jjtest2 = jjtest2 + dif * dif

20 continue

return

end

It is used like:

> portopt1(symbol.address(symbol.For("jjtest2")), c(0,0))

I foresee portopt1—if it is useful at all—not being used much directly, but
put into a function that insures that the code computing a specific function is
loaded and then calls portopt1.

General interface

The portoptgen function provides a way to build an S function that minimizes
a function in a compiled language that has several arguments. For example, a
C function that not only has a vector of parameters over which to be optimized,
but data inputs also. portoptgen creates a file of C code containing a function
to be called by the .C function, and returns an S function that makes that call.
Let’s start with an example, and go through how it works later.

The C function jjtest3 is the function that we want to minimize. This,
like the code in the last subsection, is a computationally intensive way to find
the means of numbers in some groups. However, in this case it is much more
flexible in what it can do.

> !cat jjtest3.c
#include <S.h>

double
jjtest3(pars, n, lengs, data)
long n, *lengs;
double *pars, *data;
{

S Poetry c©1998 Patrick J. Burns v1.0



14.4. OPTIMIZATION VIA PORT 345

long i, j, count=0, top_count=0;
double dif, ans=0.0;

for(i=0; i < n; i++) {
top_count += lengs[i];
for(j=count; j < top_count; j++) {

dif = data[j] - pars[i];
ans = ans + dif * dif;

}
count = top_count;

}
return(ans);

}

This function has arguments that are the array of parameters over which the
optimization takes place (they will be the means), the number of parameters,
an array giving the number of points in each group, and an array containing all
of the data. Now that we know what the function looks like, we are ready to
use portoptgen.

> fjjtest3 <- portoptgen("jjtest3", c(v.2="double", n="long",
lengs="long", data = "double"), nonpo="n", make="n")

Creating file port_opt_jjtest3.c

The first argument to portoptgen is the name of the function to minimize. The
second argument is a character vector containing the declarations for the argu-
ments to the function—these can either be C declarations (“long”, for example),
or S storage modes (“integer”). The names of this vector are used by S and C
as variable names. This call also uses two of the optional arguments.

Since n in jjtest3 is not a pointer, we indicate that in the nonpointers
argument to portoptgen. All of the variables are presumed to be passed by
address into the C function unless noted in nonpointers. In general, it is not
a good idea to force users into a double negative as in nonpointer=F means
“pointer”. It makes it more confusing, and hence more likely that bugs will
occur. But in this case the ease of use overrules this—in my mind, at least. An
improvement would be to find a better name in place of “nonpointer”.

The n variable is also in the make argument to portoptgen. This is merely
the length of the vector of parameters, so we don’t want to have this as an
argument to the S function—S can assign it within the function. Arguments
that are in make are not arguments to the S function that is created (hence they
need to be made inside the function).

In the call to portoptgen above, two things happened: the S function was
put into fjjtest3, and a file of C code was created. Here is the top of the file
of C code.

> !head -20 port_opt_jjtest3.c

S Poetry c©1998 Patrick J. Burns v1.0



346 CHAPTER 14. FUNCTIONS

#include <S.h>

void

port_opt_jjtest3_Sp(liv, lv, iv, v, icontrol, objective, limits, scale,

v_2, n, lengs, data

)

long *liv, *lv, *iv, *icontrol;

double *v, *objective, *limits, *scale;

double *v_2;

long *n;

long *lengs;

double *data;

{

long i, iter_max = iv[17], trace = icontrol[3], iternum=-1;

long *npar = icontrol;

extern double jjtest3();

if(iter_max) {

F77_CALL(mnb0)(npar, v_2, scale, limits,

objective, liv, iv, lv, v);

*objective = jjtest3(v_2, *n, lengs, data);

if(is_na(objective, DOUBLE) ||

It is a function that is called by fjjtest3 through .C. The arguments to
jjtest3 are passed in along with the other arguments needed for the optimizer,
and the call to jjtest3 is done correctly. There is nothing that needs to be
done to this except compiling it. (Note that v.2 is translated to v 2 in C.)

The S function that portoptgen returns does usually need a little work
before it is usable. Comments at the top indicate what needs to be done.

> fjjtest3
function(v.2 = NULL, lengs = NULL, data = NULL, lower

= - Inf, upper = Inf, scale = 1, control =
portopt.control(...), ...)

{
# need to ensure that jjtest3 is loaded, possibly with
# if(!is.loaded(symbol.C(’jjtest3’)))
# dyn.load(’jjtest3.o’)
#
# need to ensure that port_opt_jjtest3_Sp is loaded, possibly with
# if(!is.loaded(symbol.C(’port_opt_jjtest3_Sp’)))
# dyn.load(’port_opt_jjtest3.o’)
#
# need to fix up n

p <- length(v.2)
if(length(scale) != 1 && length(scale) != p)

stop("bad length for ’scale’ argument")
. . .

(There is lots more of the function.) In a lot of situations, you can probably just

S Poetry c©1998 Patrick J. Burns v1.0



14.4. OPTIMIZATION VIA PORT 347

uncomment the lines involving dyn.load to take care of the issue of loading.
Any variable that appears in the make argument to portoptgen will need to
be taken care of. The function as returned by portoptgen will create an error
when any of these is attempted to be used (in the .C call). It would usually be
good form to make the arguments to the S function that are also arguments to
cfun be required arguments—that is, remove the NULL default value.

Once the S function editing is done and the C code compiled, we can compute
our means.

> fjjtest3(c(1, 3), c(3, 5), 1:8)
iter: 0 objective: 60
iter: 1 objective: 34.329
iter: 2 objective: 24.1624
iter: 3 objective: 12
iter: 4 objective: 12
iter: 5 objective: 12
$parameters:
[1] 2.000000 5.999999

$objective:
[1] 12

$limits:
[,1] [,2]

lower -1e+30 -1e+30
upper 1e+30 1e+30

$convergence:
[1] "relative function convergence"

$call:
fjjtest3(v.2 = c(1, 3), lengs = c(3, 5), data = 1:8)

Here are all of the arguments to portoptgen.

> args(portoptgen)
function(cfun, args, make = F, nonpointers = F,

parameter = 1, fortran = F)
NULL

There are two that we haven’t discussed yet. The parameter argument indicates
which argument to cfun is the one over which optimization is to occur. As you
might guess, the fortran argument is a logical that tells whether cfun is Fortran
or C.

DANGER. The return value of the cfun function that portoptgen uses must
be double precision.

S Poetry c©1998 Patrick J. Burns v1.0



348 CHAPTER 14. FUNCTIONS

Now, how it all works. The first ingredient is an object that contains the
template for the C code. Here are the first few elements of it.

> portoptgen.ctemplate[1:16]
[1] "#include <S.h>"
[2] "void"
[3] "port_opt_cFsUF_Sp(liv, lv, iv, v, icontrol, obje
ctive, limits, scale, "
[4] "cFaRGS"
[5] ")"
[6] "long *liv, *lv, *iv, *icontrol;"
[7] "double *v, *objective, *limits, *scale;"
[8] "cFdEC"
[9] "{"
[10] "\tlong i, iter_max = iv[17], trace = icontrol[3],
iternum=-1;"
[11] "\tlong *npar = icontrol;"
[12] "\textern double cFfUNDEC();"
[13] "\tif(iter_max) {"
[14] "\t\tF77_CALL(mnb0)(npar, cFpAR, scale, limits,"
[15] "\t\t\tobjective, liv, iv, lv, v);"
[16] "\t\t*objective = cFcALL"

This should be familar from the C code shown above except that there are funny
bits like “cFsUF”. These will be replaced with text that depends on the function
that is being optimized.

The portoptgen.ctemplate object was created by typing in a file, then—
when it was correct—reading it into S with the command:

portoptgen.ctemplate <- scan("portopt_gen.c",
what = "", sep = "\n")

The only trick is that you want to have a double backslash in the file anywhere
that you would have a backslash in C.

Another ingredient is portoptgen.stemplate. This is the model on which
the return value of portoptgen is built. It is quite similar to the portopt1
function.

Here is the definition of portoptgen.

> portoptgen

function(cfun, args, make = F, nonpointers = F, parameter = 1, fortran = F)

{

if(!is.character(cfun) || length(cfun) > 1)

S Poetry c©1998 Patrick J. Burns v1.0



14.4. OPTIMIZATION VIA PORT 349

stop("cfun must be a single string")

if(fortran)

nonpointers <- F

bnam <- paste("v", 1:length(args), sep = "")

if(!length(anam <- names(args)))

names(args) <- bnam

else {

nonam <- nchar(anam) == 0

names(args)[nonam] <- bnam[nonam]

}

if(any(is.na(match(args, c("double", "single", "float", "integer",

"long", "character", "char", "complex"), nomatch = NA))))

stop("bad type in ’args’ argument")

cargs <- args

cam <- match(cargs, c("single", "integer", "character"), nomatch = 0)

if(any(cam)) {

cargs[cam == 1] <- "float"

cargs[cam == 2] <- "long"

cargs[cam == 3] <- "char"

}

names(cargs) <- transcribe(names(cargs), ".", "_")

if(any(duplicated(names(cargs))))

stop("duplicated names in arguments")

c.outnames <- c("lv", "liv", "v", "iv", "icontrol", "objective",

"scale", "limits")

if(sum(match(names(cargs), c.outnames, nomatch = 0)))

stop(paste("Can’t have C argument names in:", paste(c.outnames,

collapse = ", ")))

sargs <- cargs

sam <- match(sargs, c("float", "long", "char"), nomatch = 0)

sargs[sam == 1] <- "single"

sargs[sam == 2] <- "integer"

sargs[sam == 3] <- "character"

names(sargs) <- transcribe(names(sargs), "_", ".")

arglen <- length(args)

switch(mode(make),

logical = {

make <- rep(make, length = arglen)

}

,

character = {

maknam <- make

make <- rep(F, arglen)

names(make) <- names(args)

make[maknam] <- T

if(length(make) != arglen)

stop("bad input for make")

}

,

stop("invalid input for make"))

S Poetry c©1998 Patrick J. Burns v1.0



350 CHAPTER 14. FUNCTIONS

names(make) <- names(sargs)

if(is.numeric(parameter))

parameter <- names(sargs)[parameter]

else if(!match(parameter, names(sargs), nomatch = 0)) {

par.m <- match(parameter, names(args), nomatch = NA)

if(is.na(par.m))

stop("bad value for ’parameter’ argument")

parameter <- names(sargs)[par.m]

}

if(sargs[parameter] != "double")

stop("parameters need to be double precision")

if(make[parameter])

stop("parameter must be passed in, not made")

switch(mode(nonpointers),

logical = {

nonpointers <- rep(nonpointers, length = arglen)

}

,

character = {

pointnam <- nonpointers

nonpointers <- rep(F, arglen)

names(nonpointers) <- names(args)

nonpointers[pointnam] <- T

if(length(nonpointers) != arglen)

stop("bad input for nonpointers")

}

,

stop("invalid input for nonpointers")) #

#

# create and modify file of C code

#

cfile.name <- paste("port_opt_", cfun, ".c", sep = "")

cfile.test <- filetest(cfile.name, dir = T, wr = T, r = T)

if(cfile.test["exists"]) {

if(cfile.test["dir"])

stop(paste(cfile.name, "is a directory"))

if(!cfile.test["wr"])

stop(paste(cfile.name, "is unwriteable"))

if(!cfile.test["read"])

stop(paste(cfile.name, "is unreadable"))

cat("Overwriting file", cfile.name, "\n")

}

else {

cat("Creating file", cfile.name, "\n")

}

cfun.args <- paste(names(cargs), collapse = ", ")

cfun.dec <- paste(cargs, " *", names(cargs), ";", sep = "", collapse =

"\n")

if(fortran)

cfun.cn <- paste("F77_CALL(", cfun, ")", sep = "")

S Poetry c©1998 Patrick J. Burns v1.0



14.4. OPTIMIZATION VIA PORT 351

else cfun.cn <- cfun

cfun.call <- paste(cfun.cn, "(", paste(ifelse(nonpointers, "*", ""),

names(cargs), sep = "", collapse = ", "), ");", sep = "")

cfun.par <- names(cargs)[match(parameter, names(sargs))]

cat(portoptgen.ctemplate, file = cfile.name, sep = "\n")

substifile(cfile.name, "cFaRGS", cfun.args)

substifile(cfile.name, "cFdEC", cfun.dec)

substifile(cfile.name, "cFcALL", cfun.call)

substifile(cfile.name, "cFpAR", cfun.par)

substifile(cfile.name, "cFfUNDEC", cfun.cn)

substifile(cfile.name, "cFsUF", cfun) #

#

# get S function right

#

new.sargs <- names(sargs)[!make]

ans <- portoptgen.stemplate

ans.len <- length(ans)

ans[[c(ans.len, 1, 2, 2)]] <- as.name(parameter)

the.comm <- c(paste("# need to ensure that", cfun,

"is loaded, possibly with"), paste("# if(!is.loaded(symbol.",

if(fortran) "For" else "C", "(’", cfun, "’)))", sep = ""),

paste("# dyn.load(’", cfun, ".o’)", sep = ""), "# ", paste(

"# need to ensure that port_opt_", cfun,

"_Sp is loaded, possibly with", sep = ""), paste(

"# if(!is.loaded(symbol.C(’port_opt_", cfun, "_Sp’)))", sep =

""), paste("# dyn.load(’", substring(cfile.name, 1, nchar(

cfile.name) - 1), "o’)", sep = ""))

if(any(make)) {

the.comm <- c(the.comm, "# ", paste("# need to fix up", names(

make)[make]))

}

the.comm <- eval(parse(text = c("function() {", the.comm, "}")))

ans[[ans.len]] <- c(the.comm[[1]], ans[[ans.len]])

new.fun <- vector("function", length(new.sargs) + 1)

names(new.fun) <- c(new.sargs, "")

ans <- c(new.fun[ - length(new.fun)], ans)

the.dotC <- expression(ans <- .C("portopt_one_Sp",

as.integer(liv),

as.integer(lv),

iv = as.integer(init$iv),

v = as.double(init$v),

as.integer(icontrol),

objective = double(1),

limits = limits,

scale = as.double(scale))[c("parameters", "objective", "iv",

"limits")])

new.dotC <- as.call(parse(text = paste("foo(", paste(names(sargs), "=",

ifelse(make, paste("stop(’fix up", names(sargs), "’)"), paste(

"as.", sargs, "(", names(sargs), ")", sep = "")), collapse =

", "), ")")))

S Poetry c©1998 Patrick J. Burns v1.0



352 CHAPTER 14. FUNCTIONS

names(new.dotC[[1]])[match(parameter, names(new.dotC[[1]]))] <-

"parameters"

the.dotC[[c(1, 2, 2)]] <- c(the.dotC[[c(1, 2, 2)]], new.dotC[[1]][-1])

the.dotC[[c(1, 2, 2, 2)]] <- paste("port_opt_", cfun, "_Sp", sep = "")

ans.len <- length(ans)

dotC.num <- match("the..C.call", as.character(ans[[length(ans)]]))

ans[[c(ans.len, dotC.num)]] <- the.dotC[[1]]

ans

}

There’s a lot to explain here—we’ll just go in order. The first section makes
sure that the arguments are right, or can be fixed up to be right. All of the
error creation is near the top of the function. In general this is a good idea so
that the user doesn’t need to wait around merely to be told that there was an
error. In this case it is more than a good idea because we don’t want to have
the side effect of creating a permanent file, and then abort the function.

The second section builds the C code. It starts out by testing if the file that
would be used is suitable—this uses filetest of page 162. Then the template
is catted into the file, the required strings pasted together, and then substituted
into the file with substifile of page 277.

The last section creates the S function to be returned. Here we come across
the statement:

ans.len <- length(ans)
ans[[c(ans.len, 1, 2, 2)]] <- as.name(parameter)

Subscripting with a vector or list inside [[ is described on page 203. The first
few lines of portoptgen.stemplate (which is the same as ans here) are:

function(lower = - Inf, upper = Inf, scale = 1,
control = portopt.control(...), ...)

{
p <- length(This.Should.Be.Gone)
if(length(scale) != 1 && length(scale) != p)

Recall that the last component of a function is the body of the function. So the
replacement into ans is picking out the second part of the second part of the
first statement in ans, and putting in the name of the parameter.

Next comes the.comm which creates the comments at the start of the ans
that is returned. the.comm starts out life as a character vector that has been
pasted together. It is then pasted some more, parsed, and evaluated to form a
function. This move to a function is basically so we have a container to hold
the comments—they tend to run through your hands if you don’t have a proper
bucket. Next the two objects of mode “brace” are concatenated together with
c to form the new body of ans.

Now comes:

S Poetry c©1998 Patrick J. Burns v1.0



14.5. THINGS TO DO 353

new.fun <- vector("function", length(new.sargs) + 1)
names(new.fun) <- c(new.sargs, "")
ans <- c(new.fun[ - length(new.fun)], ans)

This creates a function that has arguments that are those that we want to add
to the answer. Then the two functions are concatenated together, except that
we take away the body of new.fun.

The final task to accomplish is to create the correct call to .C and place it
in ans. This follows the same pattern—we want to add to a call, so we create
another call and use c to combine them. Placing the call to .C is easy since
the spot in ans where it should go is the character string "the..C.call".

If gradients or Hessians are computable, then portopt1 and portoptgen can
be modified to use different PORT routines.

14.5 Things to Do

Add an integration method to line.integral.

Write a function similar to interpolate.lagrange or portoptgen that creates
functions that perform some other task.

Rewrite genopt so that births, jittering, and so on are all abstracted (there are
separate functions for each).

Design a genetic algorithm for an optimization problem that you have.

14.6 Further Reading

You can learn about integration in the complex plane from a text on complex
analysis, one that I happen to have is Bak and Newman (1982) Complex Anal-
ysis. Discussions of numerical integration are in numerical analysis books. One
such book is Mathews (1987).

Interpolation is discussed in many numerical analysis books, for example,
Hildebrand (1974) Introduction to Numerical Analysis.

A good source on genetic algorithms is D. E. Goldberg (1989) Genetic Algo-
rithms in Search, Optimization & Machine Learning. I also like his article (1989)
“Zen and the art of genetic algorithms.” John Holland introduced genetic algo-
rithms; his book is (1975) Adaptation in Natural and Artificial Systems.

Gay (1990) gives details about how to use some of the PORT routines, but
I haven’t found anything that gives a good explanation of how the optimization
is performed.

S Poetry c©1998 Patrick J. Burns v1.0



354

14.7 Quotations

37May Swenson “Question”

S Poetry c©1998 Patrick J. Burns v1.0



Chapter 15

Large Computations

How to live well on nothing a year.

15.1 Backups

When the computations are large in the sense of time-consuming but the answer
is not especially large, I use a backup scheme. This saves partial results in case
the job stops for some reason.

Here is an example of the technique.

"fjjsimbk"<-
function(n, dof, trials = 100)
{

backup <- paste("sbk.BACKUP", unix("echo $$"),
sep = ".")

simbk.sub <- function(n, dof)
{

sum(rt(n, dof))
}
ans <- numeric(trials)
attr(ans, "call") <- match.call()
for(i in 1:trials) {

ans[i] <- simbk.sub(n, dof)
if(i %% 10 == 0)

assign(backup, ans, where = 1,
immediate = T)

}
ans

}

355



356 CHAPTER 15. LARGE COMPUTATIONS

In a real application the sub-function would not be so trivial (I would hope). The
two statements involving backup implement the idea. The first statement cre-
ates an object name that will be essentially unique from call to call of the func-
tion. The second statement assigns the backup object to the working database
at appropriate intervals. The immediate=T is key—this makes sure that the
object is actually written to disk.

To use this, we might make two different calls to the function, probably in
two different files input to different BATCH jobs.

ts.10.5 <- fjjsimbk(10,5)

ts.20.3 <- fjjsimbk(20,3)

At a later time we can see what exists in our database:

> objects()
[1] ".First" ".Last.value"
[3] ".Random.seed" "sbk.BACKUP.13517"
[5] "sbk.BACKUP.13843" "ts.10.5"

Here we see that there is a backup object for each process, but only one “real”
result from the function. It could be that the other call has merely not finished
yet, or it may have crashed. The call attribute allows us to sort out which
backup object is for which call.

> attr(sbk.BACKUP.13517, "call")
fjjsimbk(n = 10, dof = 5)
> attr(sbk.BACKUP.13843, "call")
fjjsimbk(n = 20, dof = 3)

This scheme is useful for simulations and similar situations in which there
are a number of results. It is harder to apply where there is really just a single
answer.

An alternative approach would be to have the function not return the object,
but rather use the object that is assigned internally be the “result” of the
function. In general, I’d rather avoid this—the hidden side effects can create
confusion. Of course, fjjsimbk has hidden side effects also, but the side effects
are of secondary importance and are unlikely to cause trouble. On the other
hand, if the answer is a large object, then it may be wiser not to have two copies
of it. For all averred, I had killed the bird 38

15.2 Reduce and Expand

I have created the generic functions reduce and expand to relieve memory
problems. My first application was to minimize the use of disk-space by remov-
ing components of objects that can be recreated. For example, we could create

S Poetry c©1998 Patrick J. Burns v1.0



15.2. REDUCE AND EXPAND 357

an lm.reduced class that saves space by deleting the residuals. The residuals
can be recreated by the expand method assuming that the original response is
still available and unchanged.

The default methods for reduce and expand both just return the first argu-
ment unchanged. This allows you to try to reduce an already reduced object,
or expand an unreduced object with no harm done.

"reduce.default"<-
function(x, ...)
x

Another use for reduce is to save on memory in computations. The reduced
object is passed in, and only expanded at the last minute when needed.

"fjjtwomat"<-
function(n, m, k)
{

seed <- .Random.seed
ans <- list(x = array(rnorm(n * m), c(n, m)),

y = array(rnorm(m * k), c(m, k)))
ans$seed <- seed
class(ans) <- "twomat"
ans

}

The function above produces an object of a specific class that holds two matrices.
Below is a matrix multiplication method for this class.

"%*%.twomat"<-
function(x)
x$x %*% x$y

The next function is a reduce method that stores the two matrices in new
locations, and remembers those locations.

"reduce.twomat"<-
function(x, immediate = F)
{
# attempt to make unique name

basename <- paste("rEdUtwomat", unix("echo $$"
), sep = ".") #

# ensure that it is unique
xname <- paste(basename, "x", sep = ".")
count <- 0

S Poetry c©1998 Patrick J. Burns v1.0



358 CHAPTER 15. LARGE COMPUTATIONS

bnchar <- nchar(basename)
while(exists(xname, where = 1)) {

count <- count + 1
basename <- paste(substring(basename,

1, bnchar), count, sep = ".")
xname <- paste(basename, "x", sep =

".")
}
yname <- paste(basename, "y", sep = ".")
dbname <- search()[1] # need absolute path
if(AsciiToInt(dbname)[1] != 47) {

dbname <- paste(unix("pwd"), dbname,
sep = "/")

}
assign(xname, x$x, where = 1, immediate =

immediate)
assign(yname, x$y, where = 1, immediate =

immediate)
x$x <- c(name = xname, db = dbname)
x$y <- c(name = yname, db = dbname)
class(x) <- c("twomat.reduced", class(x))
x

}

Most of the work is in ensuring that the names are unique and the full name of
the working database is known. (Actually the code takes the liberty of assuming
that if the “x” name doesn’t exist, then neither does the “y” name; this may not
be a good idea depending on the mechanism used for removing these objects.)
Below is an object of the reduced class—this is quite a small object, and is the
same size no matter how large the matrices it represents.

> jjtr
$x:

name db
"rEdUtwomat.18173.x" "/user/users/burns/spo/.Data"

$y:
name db

"rEdUtwomat.18173.y" "/user/users/burns/spo/.Data"

$seed:
[1] 41 57 51 7 5 2 21 49 27 17 30 0

attr(, "class"):
[1] "twomat.reduced" "twomat"

Here is the method for expanding the reduced object. It merely gets the real

S Poetry c©1998 Patrick J. Burns v1.0



15.2. REDUCE AND EXPAND 359

matrices, and peels off the first element of the class.

"expand.twomat.reduced"<-
function(x)
{

xn <- x$x
yn <- x$y
x$x <- get(xn["name"], where = xn["db"],

immediate = T)
x$y <- get(yn["name"], where = yn["db"],

immediate = T)
class(x) <- class(x)[-1]
x

}

It is a good idea to check that the methods work in the sense that reducing and
then expanding gets you back to the same thing.

> all.equal(jjt, expand(reduce(jjt, im=T)))
[1] T
> all.equal(jjt, expand(reduce(jjt, im=F)))
Error in get.default(x$x["name"], whe..: Object "rEdU\

twomat.18201.x" not found
Dumped

This shows the usefulness of the immediate argument. If immediate is FALSE,
then the objects that the reduce method create are not actually written (in
S jargon, not committed) until just before the next S prompt is given. In the
example above where an error occurs, the objects are merely marked to be
written, but do not actually exist at the time that expand demands them.

Below are some ingredients for testing how much memory is saved.

> fjjmul1
function(x)
{

cat("memory at start ", fjjcomma(memory.size(
)), "\n")

y <- x
cat("memory before fjjmul2 ", fjjcomma(

memory.size()), "\n")
ans <- fjjmul2(y)
cat("memory after fjjmul2 ", fjjcomma(

memory.size()), "\n")
ans

}
> fjjmul2

S Poetry c©1998 Patrick J. Burns v1.0



360

function(y)
{

sum("%*%"(expand(y)))
}
> jjtmbig <- fjjtwomat(100, 200, 200)
> fjjcomma(object.size(jjtmbig))
[1] "480,475"

And now we do the test, starting a new session each time.

> fjjmul1(jjtmbig)
memory at start 633,296
memory before fjjmul2 1,321,424
memory after fjjmul2 2,783,696
[1] -1066.744

Now, with the reduced version.

> fjjmul1(jjtmbig.red)
memory at start 633,296
memory before fjjmul2 834,000
memory after fjjmul2 2,296,272
[1] -1066.744

So we have saved one copy of the matrices in this example.

15.3 Things to Do

Revise or add to the reduce.twomat example so that there is not a problem with
stored components existing that are no longer pointed to by a twomat.reduced
object.

15.4 Further Reading

Vanity Fair by William Makepeace Thackeray.

15.5 Quotations

38Samuel Taylor Coleridge “The Rime of the Ancient Mariner”

S Poetry c©1998 Patrick J. Burns v1.0



Chapter 16

Esoterics

Where we sail off the edge.

16.1 Magnitude

We have come all this way without a theorem, I now eliminate the deficiency.

Theorem 1 An S object with at least one attribute consumes an infinite
amount of space.

Proof: The demonstration uses the in-built matrix freeny.x, but the par-
ticular object—as long as it has an attribute—is immaterial. Consider the
sequence:

> attributes(attributes(freeny.x))
$names:
[1] "dim" "dimnames"

> attributes(attributes(attributes(freeny.x)))
$names:
[1] "names"

> attributes(attributes(attributes(
+ attributes(freeny.x))))
$names:
[1] "names"

Obviously this continues ad infinitum so the size of the object is bounded below
by:

> object.size(attributes(attributes(attributes(
+ freeny.x)))) * Inf

361



362 CHAPTER 16. ESOTERICS

[1] Inf

Q.E.D. ♠

16.2 Dostoevsky

Twice-two-makes-four is a farcical, dressed-up fellow who stands
across your path with arms akimbo and spits at you. Mind you,
I quite agree that twice-two-makes-four is a most excellent thing;
but if we are to give everything its due, then twice-two-makes-five is
sometimes a most charming little thing, too.

Fyodor Dostoevsky Notes from the Underground
translated by David Magarshack

The object of the game is to make twice two equal five.

My first method is rather cheap and unsatisfactory. It gives the required
answer:

> 2 * 2
[1] 5

but is clumsy elsewhere.

> 2 * 0:9
[1] 1 3 5 7 9 11 13 15 17 19

Here’s the adjustment:

> get("*")
function(e1, e2)
.Internal(e1 * e2, "do_op", T, 4) + 1

The next attempt is slightly better, though it goes to the bother of writing
a new function.

> twice(2)
[1] 5
> twice(1:9)
[1] 2 5 6 8 10 12 14 16 18

Behind the scenes is a little work involving two’s and five’s:

S Poetry c©1998 Patrick J. Burns v1.0



16.3. THINGS TO DO 363

"twice"<-
function(x)
{

2 * x + dnorm(x - 2, sd = 1/sqrt(2 * pi)/5)/5
}

This definition of twice gives answers close to the usual except for inputs close
to 2.

16.3 Things to Do

Make 2 ∗ 2 = 5.

Develop a topology for S objects.

16.4 Further Reading

Catch-22 by Joseph Heller.

S Poetry c©1998 Patrick J. Burns v1.0



364 CHAPTER 16. ESOTERICS

S Poetry c©1998 Patrick J. Burns v1.0



Epilogue

If I’ve convinced you that abstraction and consistency are your friends, that
redundancy is your enemy, that artistry in programming is worth seeking—that
is, if you have become a proud, lazy, impatient, distrustful simpleton—then in
some measure I have succeeded. it’s not elves exactly 39

It is no accident that abstraction is given top billing in the previous para-
graph. Unix is a powerful operating system because it has simple but general
abstractions. C has become a major programming language because it has ef-
ficient abstractions that allow the user effective control of the machine. Your
code, too, can be potent if you create the right abstractions. Perhaps I haven’t
mentioned abstraction enough. Abstraction, abstraction, abstraction.

So, what are the steps of programming?

• Think about what functionality is desirable. Then think about how to gener-
alize that.

• Find algorithms that are as simple and general as possible.

• Implement the algorithms as simply and generally as you can.

• Document your code clearly and completely.

• Figure out how to test your code thoroughly.

• Write a verification suite.

• Put your code, documentation and tests under a source code control scheme.

• Revise as necessary.

Notice that the actual code generation is but a fraction of the time involved
(unless perhaps you are just learning the language). It isn’t hard to get some-
thing to happen, but it can be devilish to get the right thing to happen.

q()

or just some human sleep 40

365



366

Quotations

39Robert Frost “Mending Wall”
40Robert Frost “After Apple Picking”

S Poetry c©1998 Patrick J. Burns v1.0



Bibliography

[1] Abelson, H., Sussman, G. J., and Sussman, J. Structure and Inter-
pretation of Computer Programs, Second Edition. MIT Press, Cambridge,
Massachusetts, 1996.

[2] Abramowitz, M., and Stegun, I. Handbook of Mathematical Functions.
Dover, New York, 1972.

[3] Bak, J., and Newman, D. J. Complex Analysis. Springer-Verlag, New
York, 1982.

[4] Bates, D., and Watts, D. G. Nonlinear Regression Analysis and Its
Applications. John Wiley and Sons, New York, 1988.

[5] Becker, R. A., and Chambers, J. M. S: An Interactive Environment
for Data Analysis and Graphics. Wadsworth, 1984.

[6] Becker, R. A., and Chambers, J. M. Extending the S System.
Wadsworth, 1985.

[7] Becker, R. A., Chambers, J. M., and Wilks, A. R. The New S
Language. Chapman and Hall, 1988.

[8] Bentley, J. L. Programming Pearls. Addison-Wesley, Reading, Mas-
sachusetts, 1986.

[9] Bentley, J. L. More Programming Pearls: confessions of a coder.
Addison-Wesley, Reading, Massachusetts, 1988.

[10] Beran, J. Statistics for Long-Memory Processes. Chapman and Hall, New
York, 1994.

[11] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. Clas-
sification and Regression Trees. Wadsworth, Belmont, California, 1984.

[12] Chachra, V., Ghare, P. M., and Moore, J. M. Applications of Graph
Theory Algorithms. Elvesier North Holland, New York, 1979.

[13] Chambers, J. M., and Hastie, T. Statistical Models in S. Chapman
and Hall, 1992.

367



368 BIBLIOGRAPHY

[14] Cleveland, W. Visualizing Data. Hobart Press, 1993.

[15] Darnell, P. A., and Margolis, P. E. C: A Software Engineering
Approach, Third Edition. Springer-Verlag, New York, 1997.

[16] Davis, A. M. 201 Principles of Software Development. McGraw-Hill, New
York, 1995.

[17] Gay, D. M. Usage summary for selected optimization routines. Tech. rep.,
ATT Bell Laboratories, Murray Hill, New Jersey, 1990.

[18] Goldberg, D. E. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, Mass., 1989.

[19] Goldberg, D. E. Zen and the art of genetic algorithms. In Proceedings of
the 3rd International Conference on Genetic Algorithms (1989), pp. 80–85.

[20] Golub, G. H., and Van Loan, C. F. Matrix Computations, Third
Edition. Johns Hopkins University Press, Baltimore, Maryland, 1996.

[21] Hamming, R. W. Numerical Methods for Scientists and Engineers. Dover,
New York, 1973.

[22] Hastie, T., and Tibshirani, R. Generalized Additive Models. Chapman
and Hall, 1990.

[23] Hildebrand, F. B. Introduction to Numerical Analysis. Dover, 1974.

[24] Holland, J. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, Michigan, 1975.

[25] Jennison, C., and Sheehan, N. Theoretical and empirical properties
of the genetic algorithm as a numerical optimizer. Journal of Statistical
Graphics and Computing 4 (1995), 296–318.

[26] Kernighan, B. W., and Plauger, P. J. The Elements of Programming
Style. McGraw-Hill, New York, 1974.

[27] Kernighan, B. W., and Ritchie, D. M. The C Programming Language,
2nd Edition. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[28] Knuth, D. E. Fundamental Algorithms, Second Edition. Addison-Wesley,
Reading, Massachusetts, 1973.

[29] Knuth, D. E. Seminumerical Algorithms, Second Edition. Addison-
Wesley, Reading, Massachusetts, 1981.

[30] Libes, D. Obfuscated C and Other Mysteries. John Wiley and Sons, New
York, 1993.

[31] Mathews, J. H. Numerical Methods for Computer Science, Engineering,
and Mathematics. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

S Poetry c©1998 Patrick J. Burns v1.0



BIBLIOGRAPHY 369

[32] MathSoft, Inc. S-PLUS Programmer’s Manual. MathSoft, Inc., 1994.

[33] McCullagh, P., and Nelder, J. A. Generalized Linear Models, Second
Edition. Chapman and Hall, New York, 1989.

[34] Nelder, J. A., and Mead, R. A simplex method for function minimiza-
tion. Computer J. 7 (1965), 308–313.

[35] Peek, J., O’Reilly, T., and Loukides, M. Unix Power Tools, Second
Edition. O’Reilly and Associates, Sebastopol, CA., 1997.

[36] Polya, G. How to Solve It, Second Edition. Penguin, 1990.

[37] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flan-
nery, B. P. Numerical Recipes in C, Second Edition. Cambridge Univer-
sity Press, Cambridge, 1992.

[38] Ripley, B. Pattern Recognition and Neural Networks. Cambridge Univer-
sity Press, Cambridge, 1996.

[39] Schwartz, R. L. Learning Perl. O’Reilly and Associates, Sebastopol,
California, 1993.

[40] Seber, G. A. F., and Wild, C. J. Nonlinear Regression. John Wiley
and Sons, New York, 1989.

[41] Spector, P. An Introduction to S and S-Plus. Wadsworth, Belmont,
California, 1994.

[42] Venables, W., and Ripley, B. Modern Applied Statistics with S-Plus,
Second Edition. Springer-Verlag, New York, 1997.

[43] Wall, H. S. Analytic theory of continued fractions. Van Nostrand, New
York, 1948.

[44] Wall, L., Christiansen, T., and Schwartz, R. L. Programming Perl.
O’Reilly and Associates, Sebastopol, California, 1996.

[45] Young, D. M., and Gregory, R. T. A Survey of Numerical Mathe-
matics. Dover, New York, 1973.

S Poetry c©1998 Patrick J. Burns v1.0



370 BIBLIOGRAPHY

S Poetry c©1998 Patrick J. Burns v1.0



Glossary

abscissa 1) Math. the x-coordinate.

address 1) Comp. a number that represents a location in memory.

aggregate 1) Stat. to combine consecutive observations in a time series; for
example, a monthly time series of amount sold can be aggregated into an
annual series.

AIC 1) Stat. “An Information Criterion”, a method of combining the like-
lihood and the number of parameters so that non-nested models can
be compared, due to H. Akaike. AIC has been criticized for suggesting
models with too many parameters. See also SIC.

algorithm 1) Comp. a recipe for a computation. This can either be specific
as in Euclid’s algorithm for the greatest common divisor, or be a general
way of approaching a problem as in the EM algorithm.

alias 1) Unix. a name that expands into some (part of a) command; similar to
a macro in C. 2) Stat. in fractional experimental designs, some effects
are aliased (or confounded) with others.

alpha version 1) Comp. a prototype of some software, numerous and serious
bugs are to be expected. See beta version.

alphanumeric 1) the alphabetic characters plus the ten digits.

ampersand 1) the character “&”, a symbol used in S, C and Unix.

argument 1) Comp. an input into a function or subroutine. 2) Math. the
angle of a complex number from the positive real axis, calculated in S
with Arg.

argument matching 1) Comp. the process of deciding which arguments in a
particular call corresponds to the formal arguments of the routine being
called. This is a trivial exercise except in languages like S that allow
default values for arguments.

371



372 GLOSSARY

array 1) S. an object that has a dim attribute, and represents a (hyper)
rectangle of objects. Also a function for creating those objects. 2) C. an
object that is the equivalent to a vector in S. See also ragged array.

ASCII 1) Comp. a standard for encoding characters. Pronounced “ASS-
key”, it is an acronym for American Standard Code for Information
Interchange. Each character uses 8 bits (1 byte), but many programs
(including S) only deal well with the first 128 = 27 characters.

aspect ratio 1) Comp. the ratio of the x-axis to the y-axis. This can refer
either to the physical size of the graph, or to the units represented by the
graph.

assembly code 1) Comp. a program in the machine language for a particular
chip—very fast, but untidy.

assignment 1) Comp. the process of giving a name to some entity. Performed
in S with “<-”.

assignment function 1) S. the definition of a function that appears on the
left of an assignment. For example:

names(x) <- letters

The name of the names assignment function is “names<-”. If fjj is a
generic assignment function, then “fjj<-.middle” would be the assign-
ment function for fjj for class middle.

association 1) Math. an operator ◦ is associative if (x ◦ y) ◦ z = x ◦ (y ◦ z). 2)
Comp. an operator ◦ associates from left to right if x ◦ y ◦ z is evaluated
the same as (x ◦ y) ◦ z, and it associates from right to left if it evaluates
as x ◦ (y ◦ z).

asymptotic 1) Stat. an approximation of a quantity based on the limit as
the number of observations goes to infinity. For example, the asymptotic
variance of an estimator.

at sign 1) the character “@”, a symbol not used in S version 3, but is used to
access attributes in version 4.

atomic 1) S. an object that is one of the five modes numeric, logical,
character, complex, null. All elements of an atomic vector are of the
same type.

attach 1) S. the process of adding a database to the search list. This is
done with functions attach, library, module.

attributes 1) S. a named list that is a subsidiary part of an object. Examples
of attributes include class, names, dim. Also the function that retrieves
or changes this list.

S Poetry c©1998 Patrick J. Burns v1.0



373

audit 1) Comp. a record of the commands performed, generally with enough
information that all states can be reproduced. S keeps such a record in
the .Data/.Audit file.

axis 1) Math. the line in a graph along which one variable is zero. 2) S. the
information such as tick marks and tick labels that are put along an axis.
The axes are numbered 1 for the bottom, 2 for the left, 3 for the top, and
4 for the right.

background 1) Unix. a process is in the background if it is running, but not
listening to standard-in. An example is an S BATCH job. A command
can be put in the background by placing an ampersand at the end of
the command.

background color 1) S. the color of a blank graph, in S this is denoted color
0.

backquote 1) the symbol ‘, unused in S, used in Unix to surround commands
that are to be interpreted. See also single quote.

backslash 1) the symbol “ \ ” used as an escape character by many languages.

backward-compatibility 1) Comp. the state such that old code will run
properly using a new version of the software.

bang 1) Comp. slang for the exclamation mark “!”. Also called “screamer”.

batch 1) Comp. a style of computing in which all instructions are submitted
and then results are obtained; compare to interactive.

benchmark 1) Comp. the process of testing the speed of one computer (or
piece of software) relative to another. A task that is harder than it seems
since the relative speed of different tasks is often not very similar.

beta test See beta version.

beta version 1) Comp. a version of some software that is thought to be
close to release quality, but which has only been used by the developers.
Allowing a group of people to use the version in return for reporting bugs
and giving general comments is the beta test.

bias 1) Stat. the difference between the mean value of an estimator and the
true (unknown) value that is being estimated. Often there is a trade-off
between bias and variance when choosing an estimator.

binary file 1) Comp. a file that is in a format suitable to some program as
opposed to a format for being read by humans. Generally, any file that
is not in ASCII format is said to be a binary file. 2) Comp. in particular,
object code.

S Poetry c©1998 Patrick J. Burns v1.0



374 GLOSSARY

binary number 1) Math. a number in base 2, composed only of the digits 0
and 1.

binary tree 1) Math. a relative of a mathematical graph in which each
node has zero, one or two children (other nodes), and “left” children are
distinguished from “right” children. It is the distinction of left and right
that makes a binary tree different from an ordinary mathematical tree.

bit 1) Comp. a binary digit. 2) Comp. the amount of information contained
in a binary digit.

bivariate 1) Stat. a situation involving two random variables. The smallest
case of multivariate.

BLAS 1) Comp. acronym for Basic Linear Algebra Subroutine. If your com-
puter has the BLAS, it does not have a case of ennui but rather it has
subroutines for doing some linear algebra tasks that are optimized for
that machine.

blue book 1) S. Becker, Chambers and Wilks (1988) The New S Language.

body 1) S. the part of a function where the computations are, as opposed to
the arguments.

bootstrap 1) Stat. a way of evaluating the variability of an estimate by
resampling the input data. 2) Comp. starting a simple process that
allows a similar but more complex process to work.

Bourne shell 1) Unix. one of the most common Unix shells, very popular
for programming.

box 1) S. the lines around the plot area of a figure.

box constraint 1) Math. constraints on a vector such that there is a minimum
and a maximum for each element (independently of the other elements).
Compare linear constraint.

boxplot 1) Stat. a graph indicating the distribution of some data. There
are various definitions, but a common one (and the one used in S) is:
The ends of the box are the first and third quartiles, the mark within
the box is the median. The “whiskers” stretch to the farthest datapoint
that is within distance d of the near end of the box, where d is some
number times the length of the box. Points farther than d from the box
are individually marked.

brace 1) one of the symbols “{” or “}”, used in S and in C to bind several
commands into one. See also bracket, parenthesis.

bracket 1) one of the symbols “[” or “]”, used in S and in C for subscripting.
Sometimes called “square bracket” to distinguish from the more general
use of the term “bracket” that includes braces and parentheses.

S Poetry c©1998 Patrick J. Burns v1.0



375

brain-dead 1) Comp. slang for something that is ill-planned and/or ill-
executed.

buffer 1) Comp. a chunk of memory set aside for a specific purpose. For
example printed output in C uses a buffer—characters to be printed are
put in the buffer and printing actually takes place when the buffer is full;
then the buffer is marked empty so it can accept more characters.

bug 1) Comp. a problem with some software or hardware. 2) Comp. pejorative
for feature.

byte 1) Comp. the basic unit of memory for a computer, in most cases con-
sisting of 8 bits.

C shell 1) Unix. a popular shell for interactive use, less popular for program-
ming.

cache 1) Comp. a storage area that is treated specially in some way. Almost
always the term is used to mean something that is time efficient—it can
be a memory location, a hash table, a lookup table, etc.

call 1) S. the action of invoking a function. 2) S. a mode, an object of mode
call contains the information for a specific call to a function. 3) S. a
component or attribute of many S objects that is the call that created
the object of which it is a part (the mode of this component or attribute
is generally call).

canonical correlation 1) Stat. a way of assessing the realationship between
two multivariate sets of data.

carriage return 1) Comp. an ASCII character rather like newline, but not
quite the same.

case-sensitive 1) Comp. a program is case-sensitive if capital letters are
considered to be distinct from lower-case letters. S, Unix and C are case-
sensitive; Fortran and DOS are not.

category 1) Stat. a variable that takes on a finite number of values and the
values are generally non-numeric. Compare to continuous variable.
The levels can be ordered as in {“low”, “medium”, “high”}, or not as in
{“corgi”, “kitty”, “human”}. 2) S. an object that represents a category;
the preferred type of object is one that inherits from class factor.

ceiling 1) Math. the smallest integer greater than or equal to a number.
Compare floor.

central processing unit 1) Comp. the computer chip that does the actual
computation. Abbreviated as “CPU”.

chaos 1) Math. a process that appears to be random, but is really deterministic.
Pseudorandom numbers are an example of chaos.

S Poetry c©1998 Patrick J. Burns v1.0



376 GLOSSARY

character 1) S. an atomic mode, each element of a character vector is a
character string of arbitrary length.

characteristic 1) Comp. the exponent of a number stored in floating-point.
The other part is the mantissa. 2) see eigen.

characteristic function 1) Stat. the Fourier transform of the density function
of a random variable. One use is to compute moments of the distribution.

child 1) S. a memory frame is the child of the frame that caused it to come
into existence. Frame 1 is no one’s child. 2) Unix. a process is the child
of the process that spawned it.

class 1) S. an attribute, the class attribute of an object determines which
method of a generic function is dispatched when the object is a par-
ticular argument in the function call.

classification tree 1) Stat. a statistical model that describes a categorical
variable by means of a recursive partition of the explanatory variables
(where each partition is of a single explanatory variable). Fit in S with
tree. See also regression tree.

clustering 1) Stat. a technique for grouping datapoints by their similarity;
this is called “unsupervised learning” in the machine-learning literature.

coercion 1) Comp. the conversion of an object from one concept to another,
such as from character to numeric, or from double-precision floating-point
to single-precision floating-point.

collision 1) Comp. the occurrence of more than one value being encoded to
the same location in a hash table.

colon 1) the character “:” which is used in S to produce sequences.

column-major order 1) Comp. the storage order of the elements of a matrix
in which all of the elements of the first column are together, followed by
the elements of the second column, etc. S and Fortran store matrices
(and higher dimensional arrays) in column-major order. Compare to
row-major order.

combination 1) Math. a selection without replacement of a certain number of
elements from a finite set where the order of the selection is ignored. The
binomial coefficient gives the number of combinations. Compare with
permutation.

command line editing 1) Comp. the ability to recall past commands, edit
them and execute the modified command. In S this can be accomplished
with S-mode for emacs, or through the -e flag to S-PLUS.

command 1) a non-technical term—something that will make the computer
do something.

S Poetry c©1998 Patrick J. Burns v1.0



377

comment 1) Comp. text in software that is ignored in computations, and is
used to inform humans reading the code. In S, text following a pound
sign on a line is a comment.

commitment 1) S. an assignment of an object to a permanent location is
committed when it is actually written to disk, which often is not until
S is about to give a prompt rather than at the time the assignment is
made. In the interim S acts as if the object were in the specified location
even though it isn’t physically there.

commute 1) Math. an operator ◦ commutes if x ◦ y = y ◦ x.

compacting 1) S. term used to mean garbage collection. Compacting
usually occurs only inside of loops.

comparison operator 1) Comp. an operator that tests equality or inequality.
The comparison operators in S are ==, !=, >, <, >=, <=.

compile 1) Comp. the act of converting source code into the corresponding
instructions for a particular computer chip and operating system. The
result is a file of object code.

compile-time 1) Comp. the time at which a program was compiled, as
opposed to when it is used which is called run-time.

compiled language 1) Comp. a language, C or Fortran for example, in
which the source code is compiled into object code which can then be
executed. Compare to interpreted language.

complex 1) S. an atomic mode, an object of this mode contains complex
numbers.

complex number 1) Math. a number which is a real number plus a real
number times the square root of −1. The square root of −1 is often
denoted “i”, which is the case in S.

component 1) S. an item in a list or other recursive object. The length of a
list is the number of components it has. Compare with element.

condition number 1) Comp. a number that states the degree of ill-conditioning
in a computation. By convention, small numbers mean good results, and
large or infinite values mean poor results. For example, the condition
number for inverting a matrix is often defined as the ratio of largest to
smallest singular value.

conditional distribution 1) Stat. a probability distribution that assumes
some condition holds. For example, the distribution of height given that
weight is less than some specific amount.

S Poetry c©1998 Patrick J. Burns v1.0



378 GLOSSARY

conditioning plot 1) Comp. a plot of some sort that is conditional on a value
or set of values of a variable that is not represented in the plot. The
coplot function does this in S.

confounded 1) Stat. two effects are confounded if the data at hand can
not distinguish if it is only one or the other that has influence on the
response. For example, if you only observe people who either use both
alcohol and tobacco or use neither, then you won’t be able to discern
the health effects of one of the drugs. Confounding is often a matter of
degree, not just totally confounded versus not confounded at all.

confusion matrix 1) Stat. when a categorical variable is being modeled,
a matrix that is a contingency table of the true categories versus the
predicted categories from the model of the data.

conjugate 1) Math. a number is the (complex) conjugate of another if it has the
same real part but the opposite imaginary part, so a− bi is the conjugate
of a+ bi. Computed in S with Conj. 2) Stat. in Bayesian statistics there
are conjugate distributions, meaning that the computations simplify when
the two distributions are used together as prior and likelihood.

constant 1) S. an object—like the number 5.13—that is fixed. 2) Math. an
object that is fixed, but not necesarily known.

constraint 1) Math. a condition placed on a problem. Two common classes
of constraint are box constraint and linear constraint.

contingency table 1) Stat. a table of counts of the number of occurrences
in the combination of levels of two or more categorical variables. When
there are two variables, then the table is represented as a matrix. More
variables means higher dimensional arrays. These are created in S with
table. 2) where you eat when your kitchen table has a broken leg.

continuation 1) S. an incomplete statement may be given to S and the con-
tinuation of the command given on one or more additional lines. The
default continuation prompt is “+ ”. 2) Math. a means of extending a
function over more of the complex plane.

continuous variable 1) Stat. a variable that can (conceptually) take on any
value in some range of the real numbers. Compare to category.

contour plot 1) Comp. a graphic that shows the value of a function of two
variables by drawing lines of equal value of the function.

contrast 1) Stat. a coefficient vector that sums to zero. Important because
they are orthogonal to the vector of all 1’s which corresponds to the
mean. 2) S. an attribute or component of some objects representing a
statistical model that shows the set of contrasts that was used in the fit-
ting process. (These are not necessarily contrasts in the sense of meaning
1.)

S Poetry c©1998 Patrick J. Burns v1.0



379

control 1) Comp. the act of keeping a series of backups of objects such as
files of code or documentation. In Unix this is done with SCCS or RCS
(and probably other methods).

control operator 1) S. one of the operators && or || which perform non-
vectorized “and” and “or”, respectively.

CPU 1) Comp. acronym for central processing unit.

crash 1) Comp. slang for the unintentional or unexpected halt of a program
or of hardware.

cross-validation 1) Stat. a process of estimating the quality of a model by
comparing observations left out of the fitting process with the prediction
of that fit for the observations. For example, the available observations
are randomly divided into 10 groups, the fitting is performed 10 times
with a different group dropped each time. Read carefully when this term
comes up—there are some confusing uses of it.

cursor 1) Comp. the marker on a computer screen that indicates where input
is to go, or the spot where the mouse is pointing.

cut and paste 1) Comp. the action when using a window system of marking
some text in one spot and making that text appear in another spot.

data frame 1) S. an object of class data.frame that represents a rectangle
of values in which the type of value may be different from column to
column. Compare to matrix.

database 1) S. an item on the search list, or something that might be. 2)
Comp. a program designed to store information—generally in the form
of fields and records, and often using SQL.

debug 1) Comp. the process of tracking down and fixing a problem. [The
entomology of this word is reputed to be that a moth flew into the Mark
I computer in 1945, crashing the machine. The problem was fixed by
“debugging” the relay that failed. If this story isn’t true, it should be.]

decimal number 1) Math. a number written in base ten.

declaration 1) Comp. the specification of the type of object that a variable
is to be. This is done in compiled languages like C and Fortran, but
essentially non-existent in S.

decomposition 1) Math. writing a matrix as the product of two or more other
matrices of special types; for example, QR decomposition.

default 1) S. the value of an optional argument that is not given in the call.

S Poetry c©1998 Patrick J. Burns v1.0



380 GLOSSARY

density 1) Stat. a function that defines a probability distribution. If the
distribution is discrete, then the density at a point is the probability of
the distribution taking that value. If the distribution is continuous, then
the density is such that the integral between any two points of the density
is the probability of the distribution landing in that interval.

deparse 1) S. to change a language object into one or more character strings
that represents the object.

dependent 1) Stat. two random variables are dependent if knowing informa-
tion about one helps predict the other. 2) Math. a dependent variable
is a function of one or more other variables. 3) Stat. a response in a
statistical model. This is in analogy to meaning 2, but confusing because
of meaning 1.

deque 1) Comp. a data structure similar to a stack or a queue except that
both adding and deleting are allowed at both ends. [I believe the name
derives from “double-ended queue.”]

dereference 1) C. the act of getting the value pointed to by a pointer, done
with the ∗ operator.

derivative 1) Math. the slope of a function at any given point.

deviance 1) Stat. a measure of the distance of the data from its fit to a
model. The form of the measurement depends on the assumed error
distribution.

diagnostics 1) Stat. statistics and graphics intended to show how well a
statistical model fits the data—an important part of the modeling process.

diagonal matrix 1) Math. a matrix that is zero except on the diagonal
(where the row number is equal to the column number).

dim 1) S. the attribute that describes the shape of an array. Also the function
that retrieves or changes this attribute.

directory 1) Comp. a location that contains files and (possibly) sub-directories.

distribution 1) Stat. a description of how a particular random variable
behaves.

distribution function 1) Stat. a function of x that is the probability that a
random variable will be less than or equal to x.

distribution-free test 1) Stat. a class of hypothesis tests which use ranks
of the data. An example is the Wilcoxon signed-rank test. Some times
called “nonparametric”.

S Poetry c©1998 Patrick J. Burns v1.0



381

dot plot 1) Comp. a plot that displays information as plotting symbols that
are each some distance along their respective lines—used as an alternative
to barplots and pie charts. These are created in S with dotchart.

dot product 1) Math. a number which is the sum of the product of corre-
sponding elements of two vectors.

u · v =
n∑
i=1

uivi

where n is the length of the vectors. This can be done in S via sum(u*v).

double quote 1) the character ". See also backquote and single quote.

double-precision 1) Comp. a floating-point number, usually consisting
of 8 bytes. 2) Comp. computation performed with double-precision
numbers.

dump 1) S. an ASCII representation of an S object created by dump or
data.dump (these two representations are distinctly different). 2) S. the
action of representing the state of S when an error occurs. This generally
goes to the object last.dump. 3) Comp. an error action as in a core
dump.

dynamic graphics 1) Comp. graphics that change spontaneously or from
input by the user, usually to display high-dimensional data.

dynamic load 1) Comp. the process of adding code to a program that is
already running. This is performed in S with dyn.load and its relatives.
Compare static load.

dynamic programming 1) Comp. a technique for optimizing over n time
points. Given the state at time n − 1, the best decision to take is com-
putable; so work backwards through time to the present.

echo 1) Comp. the act of the computer repeating input so it can be seen.
Passwords are not echoed when they are typed in.

edge 1) Math. a part of a mathematical graph that connects two nodes.

effect 1) Stat. in 2k designs, twice the estimated coefficient for a factor or
interaction. 2) S. a component of an object of class aov that is a vector
of orthogonal single degree-of-freedom values. This is not the same as
definition 1.

efficiency 1) Comp. some measure of the amount of computing time, memory
or other resources that a program uses. 2) Stat. the variance of an
estimator (usually) measured relative to the variance of the best possible
estimator given the model.

S Poetry c©1998 Patrick J. Burns v1.0



382 GLOSSARY

eigenvalue 1) Math. When an equation of the form Ax = λx is satisfied, then
λ is an eigenvalue of the square matrix A, and x is an eigenvector of A. If
A is real-valued and symmetric, then all of the eigenvalues are real-valued.
Eigenvalues are sometimes referred to as “characteristic values”.

eigenvector See eigenvalue.

element 1) S. an item of an atomic vector. The length of an atomic vector
is the number of elements that it contains.

ellipsis 1) the set of characters “. . .”, also known as three-dots (which see).

EM algorithm 1) Stat. an approach to estimating a statistical model in which
there is some form of missing data. The expected value of the missing
data is taken (the E step), then the model likelhood is maximized given
these values (the M step). These two steps are iterated until conver-
gence. Convergence can be slow, but the code can be easier to write than
alternatives (if there are any).

environment variable 1) Unix. variable that a process passes on to its
children.

EOF 1) Comp. acronym for “End Of File.”

error 1) Stat. a random disturbance, or the difference between the data
and a model of the data. In this sense of the word, it does not mean
“mistake”. Most statistical models specify the distribution of the errors.
2) Comp. a condition that causes some program to stop execution—see
error handling and warning. 3) Comp. non-technically, a bug. See
also numerical error ,

error handling 1) Comp. the actions that happen when a program hits an
error condition. See dump (meaning 2) for what happens in S.

escape 1) Comp. to temporarily leave a program to give an operating system
command, done in S with the ! form. 2) Comp. a character that allows
the following character (or set of characters) to have a meaning other than
usual. In S the back-slash is the escape character in character strings.

evaluation 1) S. the process of doing the actual computation, after the
command has been parsed.

evaluation frame 1) S. see memory frame.

event 1) Comp. an action that happens on a computer, such as a mouse click
or the cursor entering a certain region. Version 3 of S knows nothing
about events, but version 4 does.

executable 1) Comp. (adjective) the condition when a file can be executed,
that is, will perform some action. 2) Comp. (noun) the file that executes
a program, Sqpe is the executable of S.

S Poetry c©1998 Patrick J. Burns v1.0



383

expected value 1) Stat. the mean of a probability distribution.

explanatory variable 1) Stat. a variable in a statistical model that is used
to approximate the response. This is also known as a “predictor” or the
confusing “independent variable.”

exponential notation 1) the same as scientific notation.

expression 1) S. a recursive mode in S that is the parsed form of one or
more commands. 2) Comp. used non-technically to mean a command or
part of a command. See also regular expression.

extraction See subscript.

factor 1) S. class of an object that represents a categorical variable. 2) Stat.
a categorical variable in an experimental design (hence meaning 1). 3)
Stat. a (hypothetical) latent variable in, for example, a factor analysis
model. 4) Math. relating to a product, as in “an integer can be factored
uniquely as the product of prime numbers.”

factorial 1) Math. n-factorial, written n!, is the product of the integers from 1
to n. In S this is found with gamma(n+1). Because the numbers quickly
get large, lgamma(n+1) is usually more useful.

false convergence 1) Comp. state of a derivative-based optimizer in which
it knows that it has not found an optimum, but doesn’t know in which
direction to go. This can be caused by various forms of ill-conditioning,
but the surest way to achieve it is to get the sign of the gradient wrong.

family 1) S. a class of object used in glm and gam that describes the link
function and error distribution.

FAQ 1) Comp. acronym for Frequently Asked Questions.

feature 1) Comp. euphemism for bug.

field 1) Comp. area of an ASCII file that is to be read as a unit, one or more
fields comprise a record. For example, there could be two fields, species
and weight, and each record would correspond to a different individual.
2) Comp. a similar concept in any database.

FIFO 1) Comp. acronym for “First In, First Out”, a queue.

figure 1) S. conceptual area of a graphics frame that contains a plot area
surrounded by a margin. There can be one or more figures in a frame,
all of which are surrounded by the outer margin.

file 1) Comp. an object of the operating system that holds information (and
often has a name).

FILO 1) Comp. acronym for “First In, Last Out”, a stack.

S Poetry c©1998 Patrick J. Burns v1.0



384 GLOSSARY

fixed format 1) Comp. a style of ASCII file in which the fields are each a
specified number of characters and in a specific location relative to the left
border. This is opposed to a file which divides the fields by a delimitor
such as a semicolon.

fixed-width font 1) Comp. a font in which each character is the same width.

flag 1) Unix. an optional argument to a Unix command, introduced by a
dash. For example the “t” in ls -t. 2) Comp. in programming, a logical
variable that signals a certain condition. For example, has.names in
c.rationalnum on page 251 is a flag.

floating-point number 1) Comp. a computer representation of a real num-
ber composed of a fractional part, called the mantissa and an exponent,
called the characteristic. Because the representation is finite, few num-
bers are represented exactly, and hence numerical error will usually
result during computations.

floor 1) Math. the largest integer less than or equal to a number. Compare
ceiling.

font 1) Comp. a set of descriptions of how characters are to be represented.
This can be either rather general, as in “computer modern font”; or very
specific, as in “10 point italic computer modern font.”

formula 1) S. class of object that results from an expression that uses the
tilde operator. Used to provide an argument of arbitrary complexity.
Operators generally have special meanings within formulas.

fragmented memory 1) Comp. the condition of RAM in which there are
numerous unused portions, making the total use of memory greater.

frame 1) S. there are (at least) three types of “frame” in S: memory frame
(also called “evaluation frame”), data frame, and graphics frame.

function 1) S. mode of an object that defines computations. The computa-
tions are performed when a call to the function is evaluated. 2) Math. a
correspondence from one set into another set.

functional language 1) Comp. a class of computer languages that avoids
side effects. S is essentially a functional language, but would not be
considered one by a functional language purist.

garbage collection 1) Comp. the act of freeing up memory that is no longer
being used.

Gaussian distribution 1) Stat. the most common probability distribution
in Statistics. Also known as “Normal” and “bell curve”.

S Poetry c©1998 Patrick J. Burns v1.0



385

generalized additive model 1) Stat. a statistical model in which the response
is approximated by a link function of the sum of nonlinear smooths of
each explanatory variable. The error distribution can be one of several.
Fit in S with gam.

generalized linear model 1) Stat. a statistical model in which the response
is approximated by a link function of a linear combination of the ex-
planatory variables. The error distribution can be one of several. Fit in
S with glm.

generic function 1) S. a function whose behavior is determined by the class
of one or more of its arguments. The class of the relevant argument(s)
determines which method of the generic function is used.

genetic algorithm 1) Comp. a form of random algorithm used for opti-
mization that imitates a natural selection process.

gigabyte 1) Comp. 109 bytes. 2) Comp. 230 bytes.

global variable 1) Comp. (in S terminology) a variable that is not created
locally, and is not passed in as an argument.

gotcha 1) Short for “got you”, the “Choppy Water” chapter contains a number
of gotchas.

gradient 1) Math. vector which is the first derivative of a multivariate function.

graph 1) Math. a collection of nodes (also called vertices) and edges which
each connect two nodes. A particular type of graph is a tree. 2) Comp.
(or “graphics”) a pictorial representation of information. In S you must
start a graphics device before creating graphics.

graphical parameter 1) S. same as graphics parameter.

graphical user interface 1) Comp. a system of how human and computer
communicate, generally consisting of windows, menus, etc. The Motif
flavor of X-Windows is an example.

graphics device 1) S. a program that renders graphics in some form. For
example, some create a window and draw graphics in the window. The
postscript device translates the graphics into PostScript and then sends
it to a printer or a file. 2) S. an S function that starts such a program.

graphics frame 1) S. if the graphics are printed, this is equivalent to a single
page. A frame contains one or more figures, and an outer margin.

graphics parameter 1) S. a number, string or logical value that controls some
aspect of how a graph will look, or that describes the state of the graphics
device. The par function queries and changes graphics parameters.

S Poetry c©1998 Patrick J. Burns v1.0



386 GLOSSARY

gray scale 1) Comp. the rendering of values by means of different shades of
gray. This can be done in S-PLUS with image.

greedy algorithm 1) Comp. (not strictly an algorithm, but more a description
of some algorithms) an optimization algorithm that always does the best
it can on each step, but does not look ahead. For some problems this will
produce the true optimum, but for lots of problems it will not.

group 1) S. a collection of generic functions that may have one method
written for all of them. 2) Math. a set for which there is an associative
operation, the identity for the operation is in the set, and the inverse of
every element in the set is also in the set.

GUI 1) Comp. acronym for Graphical User Interface.

hack 1) Comp. to illegally enter (or attempt to enter) a computer. 2) Comp.
to discover how some undocumented program works by experimenting
with it. 3) Comp. a kludge (meaning 1).

hacker 1) Comp. a person who “hacks” (meaning 1). 2) Comp. slang for
programmer, as in “S hacker.”

Hadamard product 1) Math. element by element product of matrices. The
operation performed by * on matrices in S (the %*% operator is used for
matrix multiplication).

hang 1) Comp. said of a computer or program when nothing happens any
more, as in “S hangs when I execute this command.” This is probably
caused by one of three things: it is not doing anything, there is an infinite
loop, the computations take muxh longer than expected.

hard-coded 1) Comp. a part of a program that is not easily changed. For
example, the functionality performed in a .Internal function in S is
hard-coded since it can not be changed by users. Another example is
a concept in a program that is always used as a constant rather than
abstracted into a variable.

hash symbol 1) the character “#”, also called “pound sign.”

hash table 1) Comp. a table of values in which each record has a key on which
a mathematical operation is performed to give an address for the record.
This provides fast access to any record for which the key is known.

hat 1) slang for the caret character, .̂ Used in Statistics to mean an estimate,
often specifically the MLE.

hat matrix 1) Stat. the matrix (in linear regression) that puts the “hat” on
the vector of observations, that is, the hat matrix times the observation
vector equals the fitted observations. ŷ = Hy. It is mainly the diagonal
of the hat matrix that is of interest in diagnostics.

S Poetry c©1998 Patrick J. Burns v1.0



387

header file 1) C. a file usually ending in “.h” that contains definitions of general
use—intended to be included in code. The S.h file, which can be used
for C code to be called by S, is an example.

help file 1) S. the on-line documentation on individual objects. The corre-
sponding term in Unix is “man page”.

Hermitian matrix 1) Math. a matrix that is equal to the transpose of its
complex conjugate. Also called “self-adjoint.” For real-valued matrices,
this is the same as symmetric.

Hessian 1) Math. matrix which is the second derivative of a multivariate
function.

hexadecimal 1) Math. referring to base 16.

high-level graphics function 1) S. a function that makes a new graphics
frame, and then creates a graph.

high-level graphics parameter 1) S. a graphics parameter that may not
be given to par.

histogram 1) Stat. a plot showing the distribution of a variable by means
of boxes that show the count of observations in a number of adjacent
intervals. Created in S by hist.

hook 1) Comp. a feature of a program that allows some functionality to
be easily added later if desired. As in, “line.integral has a hook for
additional methods of integration.”

idempotent 1) Math. an object such that the product of itself with itself
equals itself. 0 and 1 are idempotent, as are some matrices.

independent 1) Stat. two distributions are independent if information on
one gives you no information about the other. Mathematically this is
expressed by the density of the joint distribution being equal to the
product of the densities of the marginal distributions. 2) Math. an
independent variable is in the domain of a function. 3) Stat. the term
“independent variable ” is used to mean an explanatory variable in
analogy with meaning 2, but confusing because of meaning 1.

index 1) S. an element or component number. In the S command x[4], 4 is
the index into x.

indirection 1) Comp. a form of abstraction in which a variable is created to
avoid hard-coding something. For instance, creating a variable for the
first part of a path to a file.

information matrix 1) Stat. matrix that measures the variability of esti-
mated parameters. In maximum likelihood estimation, this can be
approximated using the Hessian at the optimum.

S Poetry c©1998 Patrick J. Burns v1.0



388 GLOSSARY

inheritance 1) Comp. the feature of object-oriented programming in
which a subclass of objects can use some of the methods for the main
class. In S inheritance results when a class attribute has length greater
than one.

input/output 1) Comp. also “I/O”, functionality related to information
entering or leaving a program.

integer 1) Math. one of the numbers 0,±1,±2, . . . 2) Comp. a value known
to be an integer. Compare to floating-point. 3) S. sometimes a vector
with storage mode integer; sometimes a floating-point number that is
logically integer.

integer programming 1) Comp. an optimization problem with (linear) con-
straints in which the elements of the answer must be integer-valued.

interactive 1) Comp. a program that converses with the user. S is an interac-
tive language since it takes input from the user, responds to it, and then
asks for more input. Opposed to batch.

interpreted language 1) Comp. a language that is not compiled, so that
the interpretation into machine instructions is performed on the fly. S is
an interpreted language. Compare compiled language.

interquartile range 1) Stat. the distance between the first quartile (25th
percentile) and the third quartile (75th percentile) of a probability dis-
tribution or empirical sample.

interrupt 1) Comp. a signal that tells a program to quit doing what it is
doing at the moment. Control-c is the usual key binding for the interrupt
signal. Sometimes “interrupt” is used in a less technical sense to include
other signals as well, such as control-backslash.

invisible 1) S. a value that is not printed automatically.

IQR 1) Stat. acronym for the interquartile range.

iteration 1) Comp. performing an operation repetitively in a loop while some
things change. Compare to recursion. 2) Comp. one pass through an
iterative computation.

joint distribution 1) Stat. a multivariate probability distribution of all of
the variables in question. Compare with marginal distribution.

julian date 1) Comp. an integer that represents the number of days from a
certain date.

justify 1) Comp. to place text in a certain alignment. For example, left justify
means to place along the left margin.

K 1) Comp. slang for kilobyte.

S Poetry c©1998 Patrick J. Burns v1.0



389

kernel 1) Unix. the heart of the Unix system, the part that is the same no
matter what shell is used. 2) Stat. a function that produces the weights
for a moving average-type (kernel) smooth.

key binding 1) Comp. the association of a key or key combination on the
keyboard to a specific meaning such as “erase” or “interrupt.”

kilobyte 1) Comp. 1024 = 210 bytes. 2) Comp. 1000 bytes.

kludge 1) Comp. a piece of programming that is ugly. 2) Comp. a piece of
programming that is so ugly, it’s sort of cute.

knap-sack problem 1) Math. a specific class of optimization problem. The
prototypical problem is to maximize the value of what goes into your
knap-sack while keeping the weight below a certain limit.

Kronecker product 1) Math. a product of two matrices in which the result
has dimensions that are the products of the dimensions of the matri-
ces being multiplied. The S-PLUS kronecker function generalizes the
concept beyond multiplication.

labels 1) S. a generic function that creates labels for various objects. 2) S. an
argument to factor and ordered that controls the value of the levels
attribute of the output.

language 1) S. an object that possesses one of several modes that correspond
to the language itself rather than to data. See also functional language,
interpreted language, compiled language, natural language.

LAPACK 1) Comp. a package of Fortran routines for performing linear
algebra, available from netlib. Some LAPACK symbols are in S-PLUS.

lazy evaluation 1) Comp. strategy in which objects are not actually evalu-
ated until necessary. S uses lazy evaluation.

least absolute deviations 1) Stat. principle of estimation in which the sum
of the absolute value of the estimated errors is minimized. This typically
overcomes some of the statistical robustness problems of least squares,
but has other statistical deficiencies and is a little more expensive to
compute. Also known as LAD, least sum of absolute errors, LSAE, L1.

least squares 1) Stat. principle of estimation where the sum of squares of the
estimated errors is minimized. Useful because of its computational sim-
plicity in many situations, and its theoretical optimality given a Gaussian
distribution, but it often fails to be statistically robust.

legend 1) Comp. a part of a graph that explains the meaning of the symbols
used in the main part of the graph.

length 1) S. a fundamental property of an S object. In numeric vectors, for
example, it states how many numbers the object contains.

S Poetry c©1998 Patrick J. Burns v1.0



390 GLOSSARY

levels 1) S. attribute of a categorical object that is a character vector con-
taining the possible values that the variable can take on. The labels
argument to factor and ordered can be used to control the resulting
levels attribute.

library 1) S. a directory containing S objects that is set up so that the library
function can attach it. 2) Comp. a set of compiled routines. A user’s
object code is linked against a library to get symbols that are defined
in the library.

likelihood 1) Stat. the density of a statistical model thought of as a function of
the parameters of the distribution with the data known. The maximum
likelihood estimate is the value of the parameters that maximizes this
function. 2) Stat. the value of the likelihood (previous meaning) or its
logarithm when it is maximized.

limitation 1) Comp. something that a program might be expected to do but
doesn’t. A bug of omission.

linear constraint 1) Math. a constraint on vectors x that can be written as
cx < a or cx ≤ a or cx = a. A particularly simple and common set of
linear constraints is a box constraint.

linear programming 1) Comp. an optimization problem in which the ob-
jective function is a linear function of the variables, and there are linear
constraints on the variables. Abbreviated as “LP”.

link 1) Comp. to combine files of object code together so that symbols
from one that are used in another are resolved. 2) Unix. a file name that
points to a file with another name. This can be used for abstraction, or
to save space.

link function 1) Stat. in a generalized linear model, the function of the
linear combination of the explanatory variables that approximates the
expectation of the response. A function that performs a similar task
in other models, such as generalized additive models.

linked list 1) Comp. a data structure in which each item in the list contains
a pointer to the location of the next item. Specializations include doubly
linked lists in which each item has a pointer to the previous item as well
as the next item, and circular lists in which the final item has a pointer
to the first item.

literal 1) Comp. in a language, text that represents some specific thing, as
opposed to a variable. For example, “3.1” is a literal for the number 3.1.

load 1) Comp. to make compiled routines available to a program by making
sure that the symbol table of the program contains the routines. This
can be done statically or dynamically. See dynamic load, static load.

S Poetry c©1998 Patrick J. Burns v1.0



391

logical 1) Comp. something that is True or False. In S a third logical value is
NA. 2) S. an atomic mode.

long-tailed distribution 1) Stat. a probability distribution that has a higher
probability of points far from the mean than a Gaussian distribution
with the same variance. Such distributions are problematic for least
squares estimators.

lookup table 1) Comp. a table of values used in a computing strategy in
which values are stored and retrieved rather than being computed each
time.

low-level graphics function 1) S. a function that does not switch to a new
graphics frame, but adds to a graph instead. Examples include points,
abline, axis.

LP 1) Comp. acronym for linear programming.

machine dependent 1) Comp. something that changes between types of
computers. For example, the order of bits in a floating-point num-
ber is different on some machines than on others. The order of bits for
ASCII characters is the same on all computers, so ASCII is not machine
dependent (which is the main point of ASCII).

macro 1) C. a definition that is substituted into the code in the preprocess-
ing.

man page 1) Unix. On-line help for a Unix command.

mantissa 1) Comp. the fractional part of a number in a floating-point
number. The exponential part is called the characteristic.

margin 1) S. the conceptual part of a graph that surrounds the plot area
but is within a figure. Axis labels and titles are in the margin. See also
outer margin.

marginal distribution 1) Stat. the univariate probability distribution of a
variable (within a multivariate context). Compare with joint distribu-
tion.

masking 1) S. an object masks another object if they have the same name
(and sometimes the same mode), and the first is earlier on the search
list than the second.

mathematical graph 1) Math. See graph.

matrix 1) Math. a rectangular display of numbers that can be treated as
a single entity. 2) S. an object that has a dim of length two. (This is
the definition is.matrix uses, includes data frames.) 3) S. an object
that has a dim attribute of length two and is also an array. (This is the
definition as.matrix uses, excludes data frames.)

S Poetry c©1998 Patrick J. Burns v1.0



392 GLOSSARY

maximum likelihood estimation 1) Stat. a principle of estimation which
uses the most probable value of a set of parameters given the data and
a statistical model. In some circumstances, models exist such that the
maximum likelihood estimator is equivalent to least squares, or to least
absolute deviations.

mean 1) Stat. a measure of the central location of a probability distribution,
for empirical data it is the sum of the observations divided by the number
of observations. For a single sample it is a least squares estimate.

median 1) Stat. a measure of the central location of a probability distribution,
it is the 50th percentile. For empirical data, at least half the data are
bigger than or equal to the median, and at least half are smaller than or
equal to it. The median is not uniquely defined for all datasets. It is a
least absolute deviation estimate for a single sample.

meg 1) Comp. slang for megabyte. As in, “My S function gobbled 55 megs.”

megabyte 1) Comp. 220 bytes. 2) Comp. 1,000,000 bytes.

memory 1) Comp. storage of objects. This is often RAM, but may be
swap-space, disk-space, etc.

memory frame 1) S. the collection of values that are local to a particular
function during an evaluation. Almost every function call results in a
new frame as it is evaluated. Also called “evaluation frame.”

menu 1) Comp. a device in interactive computing that provides a number of
choices to the user from which the user is to select.

method 1) S. a function that performs the computation of a generic function
for a specific class.

micro- 1) a prefix meanining one-millionth (10−6).

missing 1) S. mode of an object that is an argument which was not included
in the call.

missing value 1) S. a value written NA that represents a value that is unknown.
See also not-a-number.

MLE 1) Stat. acronym for Maximum Likelihood Estimate.

mode 1) S. a fundamental property of an S object which states what type of
object it is. 2) Stat. the most likely value of a probability distribution.
One way to estimate this for continuous distributions is to find the max-
imum of a density estimate of the data. For discrete distributions use
table.

S Poetry c©1998 Patrick J. Burns v1.0



393

model 1) Stat. a hypothetical picture of how some particular set of data is
generated, usually consisting of a functional description plus a probability
distribution for the errors from the functional part. G. E. P. Box says,
“All models are wrong, some models are useful.”

modular programming 1) Comp. discipline in programming that allows
pieces of the code to work independently of each other.

modulo 1) Math. a number which can be thought of as the remainder after a
division. The %% operator performs this in S.

modulus 1) Math. the distance of a complex number from the origin, equiva-
lent to the absolute value for real numbers. In S the Mod function returns
this.

monadic 1) Math. unary.

Monte Carlo 1) Stat. evaluation by means of a random mechanism. Ba-
sically, a synonym for simulation. For example, a multivariate integral
can be approximated by sampling uniformly over the integration space
and averaging the function values of those points—this is Monte Carlo
integration.

multitasking 1) Comp. Using the same resources for more than one job by
a time-sharing mechanism. Unix arranges for its processes to be multi-
tasked.

multivariate 1) Stat. pertaining to more than one variable. Opposed to
univariate, but includes bivariate.

NA 1) S. how missing values and not-a-numbers are printed.

name 1) S. mode of an object that is a variable within an expression. Not
to be confused with the names attribute.

names 1) S. an attribute of many objects that labels the elements or compo-
nents of the object. Also the function that retrieves or sets this attribute.

NaN 1) Comp. a common way that not-a-number is printed. In S they are
printed NA, but can be distinguished from ordinary missing values with
is.nan.

nano- 1) a prefix meaning one-billionth (10−9), as in “π seconds are a nanocen-
tury.”

natural language 1) a language that humans have developed to communicate
with each other. Examples are English, French and Northern Sahaptin.
Opposed to computer language.

S Poetry c©1998 Patrick J. Burns v1.0



394 GLOSSARY

netlib 1) Comp. on-line repository of a large amount of software and other
information. Much of the software is numeric. The world wide web
address is http://www.netlib.org/.

newline 1) Comp. a character that means a new line of text is to be started.
Represented in S and in C by backslash-n. It is different than carriage
return.

node 1) Math. a part of a mathematical graph that is usually represented as
a point. Also called “vertex”.

nonparametric 1) Stat. a means of estimation that does not depend on
optimizing parameters, many smooths are nonparametric. 2) Stat. a
distribution-free procedure.

norm 1) Math. a number which gives the “size” of something. There are
various norms for vectors, and for matrices.

not-a-number 1) Comp. one of a class of “numbers” that represents a limit
that does not exist. Zero divided by zero, and infinity minus infinity are
examples. Often printed as NaN, but in S printed as NA. S has the function
is.nan to distinguish where not-a-numbers are.

NP-complete 1) Comp. the definition is a convoluted statement involving
polynomial-time algorithms. The practical effect is that if you have a
problem that is NP-complete, then the best you are likely to do is get a
reasonable approximation to the solution. To be sure that you have the
real solution is too hard in all but the smallest of problems.

null 1) S. mode of the object of zero length that is printed NULL.

numeric 1) S. atomic mode that represents real numbers. This contains
the storage modes double, single and integer. Complex numbers are
excluded.

numerical differentiation 1) Comp. approximating the derivative of a
function at specific locations by performing arithmetic on function values.
Not a trivial task since it involves dividing by approximately zero.

numerical error 1) Comp. the difference between an actual result as com-
puted compared to what the answer would be if computations were per-
formed with numbers of infinite precision. Note that “error” here is not
used in the sense of a bug.

numerical integration 1) Comp. the approximation of an integral by some
means. Also called “quadrature.”

object 1) S. almost everything in S is an object—if it has a mode, it is an
object.

S Poetry c©1998 Patrick J. Burns v1.0



395

object code 1) Comp. the compiled version of some code in a compiled
language. Typically the file name ends with .o in Unix.

object-oriented programming 1) Comp. a style of software in which the
action of some “message” (or function) depends on the type of object that
receives the message. In S this is accomplished with generic functions,
methods for generic functions and the class attribute.

octal 1) Math. pertaining to numbers in base 8.

OOP 1) Comp. acronym for Object-Oriented Programming.

operating system 1) Comp. software that controls the general operation of
a computer. Unix and MacOS are operating systems.

operator 1) S. a function that does not need to use the usual format when
called. Examples are +, $ and ! (when it means “not”).

option 1) S. one of several values that control some aspect of the S session.
These are queried and set by the options function.

optional argument 1) Comp. an argument to a function that need not be
given. When it isn’t given, then usually some default value is used for it.

orthogonal matrix 1) Math. a square matrix A is orthogonal (also called
“unitary”) if

A′A = I

that is, if the transpose of A is equal to the inverse of A. Some call this
“orthonormal” and allow an orthogonal matrix B to be such that B′B is
some diagonal matrix.

orthogonal vectors 1) Math. two vectors are orthogonal if their dot product
is zero.

outer margin 1) S. the coneptual area that is at the very edges of a graphics
frame. This is usually only used (that is, has non-zero area) when there
is more than one figure in the frame. See also margin.

outlier 1) Stat. a datapoint that is far enough from its predicted value in a
statistical model that it strains the credibility of the model for that point.

overflow 1) Comp. the condition when an operation causes the answer to
go out of bounds of the range of the number representation. This most
commonly happens with integers since the range is relatively small, but
may also happen with floating-point numbers. In S at least, overflow
with floating-point numbers is little problem since the value gets set to
infinity; but with integers the value is capricious.

overload 1) Comp. the action of making the same thing do more than one
job. Generic functions in S are overloaded.

S Poetry c©1998 Patrick J. Burns v1.0



396 GLOSSARY

p-value 1) Stat. in hypothesis testing, the probability that something more
extreme than the test statsitic would be observed if the null hypothesis
were true. A small p-value is evidence against the null hypothesis being
true (if the conditions assumed for the calculation of the p-value are close
enough to being true).

packed 1) Comp. one of numerous ways of writing a sparse or repetitious
matrix in a small amount of space.

paging 1) Comp. see swapping.

parent 1) S. the memory frame that caused the memory frame in question
to come into existence. 2) Unix. the process that caused the process in
question to come into existence.

parenthesis 1) either of the characters “(” or “)”, which are respectively an
“opening parenthesis” and a “closing parenthesis”. Can also be used in
the broader sense that includes braces and brackets.

parse 1) Comp. the process of breaking a group of characters into parts with
respect to the syntax of the language.

paste 1) Comp. see cut and paste. 2) Both S and Unix have paste routines
to combine text.

permission 1) Unix. the ability of the owner of a file, members of the owner’s
group and users at large to read, write and execute the file.

permutation 1) Math. a particular ordering of objects. There are n-factorial
permutations of n distinguishable objects. See also combination.

permutation test 1) Stat. a test of “no effect” that is performed by permuting
observations and comparing the real statistic with the distribution of
statistics from the permuted data. It has the advantages that it is valid
under very broad assumptions and it is easy to compute, but is limited
in applicability. It is similar to the bootstrap.

pico- 1) prefix meaning 10−12, as in picosecond.

pipe 1) Unix. a command that uses the | operator to take the standard-out
from the process on the left as the standard-in for the process on the
right.

pivot 1) Comp. there are various meanings, but commonly the reordering of
computations in order to ensure the computation is as numerically stable
as possible.

platform 1) Comp. non-technical term meaning the type of hardware, and
possibly operating system. For example, Pentium machine running
Linux.

S Poetry c©1998 Patrick J. Burns v1.0



397

plot area 1) S. the portion of a graph where the actual data go, surrounded
by the margin. See also figure, graphics frame.

pointer 1) C. an object that holds the address of the real object of interest.

polar coordinates 1) Math. the designation of points by angle and distance
from the origin. Compare to rectangular coordinates.

pop 1) Comp. the process of removing an item from a stack.

portable 1) Comp. code that can easily be adapted to numerous computers.

positive definite 1) Math. a symmetric matrix A is positive definite if
x′Ax > 0 for all x. This is equivalent to all of the eigenvalues of A being
positive.

positive semidefinite 1) Math. a symmetric matrix A is positive semidefinite
if x′Ax ≥ 0 for all x. This is equivalent to all of the eigenvalues of A
being non-negative.

posterior distribution 1) Stat. in Bayesian statistics, the distribution of the
model parameters after taking the data into account. The posterior is a
combination of the prior distribution and the likelihood.

PostScript 1) Comp. a language that describes how text and graphics are to
be rendered.

pound sign 1) The character “#”, also called “hash symbol”, used for com-
ments in many languages including S and Unix, but not C.

precedence 1) Comp. the order in which calculations take place in an other-
wise ambiguous context. For example * takes precedence over + in S and
in C.

predictor 1) Stat. synonym for explanatory variable.

preprocessor 1) C. a process that changes the text of a source file before it
is compiled. This is used, for example, to handle machine dependencies.
The pound sign is used to indicate preprocessor commands.

principal components 1) Stat. a multivariate technique that creates a set of
new variables (the principal components) that are uncorrelated with each
other and are ordered such that the variance of each principal component
is no larger than the preceeding one. The first principal component has
as large of variance as possible.

prior distribution 1) Stat. in Bayesian statistics, the hypothesized dis-
tribution of the model parameters before the data are consulted. See
posterior distribution.

S Poetry c©1998 Patrick J. Burns v1.0



398 GLOSSARY

process 1) Unix. the basic “being” in Unix, executing a command starts one
or more processes.

projection 1) Math. a specific way of mapping a space into a smaller subspace.
For example, the least squares hat matrix is a projection matrix.

projection pursuit 1) Stat. a multivariate technique that searches for “in-
teresting” linear combinations of the variables. There are a few such
techniques in use, for example projection pursuit regression.

prompt 1) Comp. characters used to indicate that an interactive program is
ready for input from the user. The default prompt in S is “> ”.

pseudorandom number 1) Comp. one of a series of numbers generated by a
mathematical function. The series is hoped to possess the most important
empirical features of a truly random series of numbers.

push 1) Comp. the process of adding an item to a stack.

QP 1) Comp. acronym for quadratic programming.

QQplot 1) Stat. a plot to compare an empirical distribution to a theoretical
probability distribution (or another empirical distribution). If the points
are along a straight line, then the two distributions match (except possibly
different means and variances). Points in the tails are much more variable
than those in the middle. Functions in S for this include qqnorm, qqplot
and ppoints.

QR decomposition 1) Comp. a class of algorithms for converting a rect-
angular matrix into an orthogonal matrix times an upper triangular
matrix. This is convenient and numerically stable for least squares
regression calculations.

quadratic programming 1) Math. the solution to a problem such as the
minimum over all x of g′x− .5x′Hx subject to a set of linear constraints
on x.

quadrature 1) Comp. univariate numerical integration.

quantile 1) Stat. a value such that a random variable is less than the value a
given percent of the time. The 95 percent quantile of a standard Gaussian
distribution is approximately 1.64. For empirical data there are a number
of ways of calculating the quantiles which are slightly different from each
other.

quartile 1) Stat. a quantile that is at the 25th, 50th or 75th percentile. See
also interquartile range.

queue 1) Comp. a data structure in which items are added at one end and
removed from the other. Also called “FIFO” for “first in, first out”.
Compare to stack.

S Poetry c©1998 Patrick J. Burns v1.0



399

quick call 1) S. an S function that does not create a separate memory frame.

R 1) Comp. a language that is very similar to S—much S code can run properly
in R. It is free software available via statlib, and was originally developed
by Robert Gentleman and Ross Ihaka.

radian 1) Math. a unit of measure for angles, there are 2π radians in a circle.
The trigonometric functions in S use radians.

radix 1) Math. the base of the representation of a number. Examples include
decimal, binary, hexadecimal.

ragged array 1) Comp. a data structure in which there is some number of
dimensions (as in an array), but not all of the “cells” contain the same
number of items. These are discussed further on page 79.

RAM 1) Comp. acronym for random access memory.

random access memory 1) Comp. also called “main memory”, the location
where data needs to be in order to be accessed by a central processing
unit. In S all of the objects involved in a computation must be held in
RAM. 2) Comp. more generally (and accurately) a memory bank that
can be accessed by address rather than sequentially.

random algorithm 1) Comp. an algorithm that uses (psuedo) random num-
bers, and hence often arrives at different solutions on different runs. Ex-
amples are genetic algorithms and simulated annealing. 2) Comp.
used loosely to mean an algorithm that uses randomness, but all of the
randomness is independent, unlike in a genetic algorithm or simulated
annealing.

random seed 1) Comp. an object that holds the state of a pseudoran-
dom number generator. In S the random seed is kept in the object
.Random.seed.

range 1) Stat. the minimum and maximum of a dataset, or the distance
between the two. 2) Math. set of values taken on by a function.

rank 1) Math. the maximum number of independent linear combinations that
can be made with rows or with columns of a matrix. In mathematics there
is a definite rank to a matrix. Computationally the rank is a much fuzzier
concept due to numerical error—there is not a universally applicable
algorithm to get the rank of a matrix. 2) Stat. the spot in the ordered
sample that an observation falls; ties create fractional values. These are
often used for distribution-free tests and statistically robust estimates.
Computed in S with rank.

real-time 1) Comp. calculations that pertain to the situation at the mo-
ment that the calculations are available. For example, a monitor that
shows current temperature is real-time, while one that shows the history

S Poetry c©1998 Patrick J. Burns v1.0



400 GLOSSARY

of yesterday’s temperature is not. The time lag longer than which the
computation is not “real-time” is application dependent.

record 1) Comp. in a database, a collection of fields constituting one obser-
vation.

rectangular coordinates 1) Math. a coordinate system in which the axes are
linear and perpendicular to each other. Compare to polar coordinates.

recursion 1) Comp. a computation that is self-referential—a recursive function
calls itself. Some problems are easily solved with recursion, but recursive
algorithms tend to be inefficient in terms of computing resources. A
recursion can always be recast as an iterative process.

recursive object 1) S. an object of one of several modes such as list and
expression that can contain an object of the same mode. A list, for
example, can have a component that is a list.

redirect 1) Unix. the action of changing how standard-in, standard-out
and/or standard-error behave. For example standard-out can be redi-
rected to a file named my.out.

register 1) Comp. a special memory location where access by the central
processing unit is extremely fast.

regression test 1) Comp. a test of the quality of software that checks if a
bug occurs that was previously found in the software. 2) It is certainly
feasible that this phrase could appear in a statistical context.

regression tree 1) Stat. the same as a classification tree except that the
response is continuous rather than categorical, fit in S with tree.

regular expression 1) Unix. the pattern matching facility used by grep and
several other commands. This is not the same as the wildcarding that
Unix uses with, for example, the ls command.

replacement 1) S. the use of subscripts on the left of an assignment to
change the values in part of an object. This is using subscripting as an
assignment function.

required argument 1) Comp. an argument to a function that must be given
in its calls. When it isn’t given, then an error results.

reserved word 1) Comp. a group of characters that can not be used as a
variable name in a language because they mean something particular in
the language. Examples of reserved words in S are return, break, T,
NULL.

response 1) Stat. a variable that is approximated in a statistical model by a
function of one or more explanatory variables. This is also confusingly
called “dependent variable”.

S Poetry c©1998 Patrick J. Burns v1.0



401

return value 1) Comp. the value that is left in place of a function call after
it is evaluated. Compare side effect.

robust 1) Stat. an estimate or hypothesis test that is relatively reliable even
when (some) assumptions are violated. For example, the median is robust
to outliers while the mean is not. 2) Comp. code that works even given
extreme conditions. Often this refers to code that is smart enough to
retain as much precision as possible. The opposite of unstable. 3)
Comp. an algorithm that works even under adverse conditions. For
example, genetic algorithms are said to be robust because they work
even with multiple local optima and if the objective is not differentiable.

root 1) Math. a value that makes a function zero. 2) Math. a node in a tree
that is treated specially as the primary node.

rounding 1) Math. the process of dropping the least significant digits at some
particular location relative to the decimal point. If a 5 is the single digit
to be dropped, then it is not clear what to do and there is more than
one convention—round to even, and round up are the two most common.
Compare truncate.

rounding error 1) Comp. same as numerical error.

row-major order 1) Comp. the order of elements in a matrix in which the
first row is filled, then the second row, etc. The IMSL C routines use
row-major ordering. Compare column-major ordering.

RTFM 1) Comp. a suggestion to Read The Manual.

rug 1) Comp. marks along an axis of a plot indicating the marginal distri-
bution of the data along that axis.

run-time 1) Comp. the time at which a program is used, as opposed to when
it is compiled, which is called compile-time.

S-news 1) a mailing list for discussion of and questions about S and S-PLUS.
At press time, the mechanism to subscribe is to send email to:
S-news-request@wubios.wustl.edu
with the body of the message equal to:
subscribe s-news
You should get back confirmation in an explanatory message.

sample 1) Stat. a selection of observations from some population. Usually
used in the sense of a selection from a known population with a specific
random mechanism.

scalar 1) Math. a single number, as opposed to a vector or matrix.

S Poetry c©1998 Patrick J. Burns v1.0



402 GLOSSARY

scientific notation 1) Math. a number written as a number within a certain
range times 10 to some power. The number 123.4 is written in scientific
notation as 1.234 × 102 or as .1234 × 103, depending on the convention
used. S (and many other programs) would write it as 1.234e2.

script 1) Unix. a program written in a shell language.

search list 1) S. the collection of databases that an S session will search, in
order, for objects. The analogue in Unix is the path variable.

seed 1) Comp. see random seed.

selection 1) Comp. see subscript.

semantics 1) Comp. the meaning attached to expressions in a language. The
semantics affects the evaluation of an expression. Compare syntax.

semicolon 1) the character “;” used in S and in C to separate commands.

session 1) S. a process that starts when S is started (interactively or in batch)
and ends when S is exited.

shell 1) Unix. the program that controls the interaction with the user. Ex-
amples are the Bourne shell and the C shell. It is a “shell” because it
covers the kernel which is unchangeable.

SIC 1) Stat. the “Schwarz Information Criterion”, sometimes denoted as BIC
(but there is another slightly different BIC also). This, like AIC, is a
way of combining the likelihood and the number of parameters so that
non-nested models may be compared. In practice, this often suggests
smaller models than does AIC.

side effect 1) Comp. any action of a program (function) except returning a
value. Compare return value.

signal 1) Comp. a special message given to a program to change what it should
do. An interrupt signal is an example.

significant digits 1) Stat. the number of digits in a number that are not just
random noise. 2) Comp. used as in “most significant digits” or “least
significant digits” (or bits) to mean the digits representing the left-most
or right-most places.

simplex algorithm 1) Comp. a specific method of solving a linear program-
ming problem. 2) Comp. an algorithm introduced by Nelder and Mead
(1965) to solve general optimization problems without the assumption
of differentiability. The algorithm starts with one more solution vector
than there are parameters; each step replaces one of the solutions with a
new one until a local minimum is found.

S Poetry c©1998 Patrick J. Burns v1.0



403

simulated annealing 1) Comp. a class of optimization algorithm that ran-
domly explores around the current best value, and the size of the random
jumps tends to be smaller and smaller as the optimization progresses.
The analogy is to a material finding its minimum energy state as it cools.
A competitor to genetic algorithms.

single quote 1) the character ’, almost always on the same key as the double
quote, not to be confused with the backquote.

single-precision 1) Comp. a floating-point number, generally using 4
bytes. 2) Comp. computations done with single-precision numbers.

singular matrix 1) Math. a square matrix that is not invertible (has determi-
nant zero). 2) Comp. a square matrix that is numerically not invertible.
The distinction between singular and non-singular is fuzzy with finite-
precision numbers.

singular value decomposition 1) Math. the decomposition of a rectangular
matrix into the product of an orthogonal matrix times a diagonal
matrix times another orthogonal matrix.

slash 1) the character “/”. Used in S and in C to mean division, and in Unix
within path names. 2) Stat. a probability distribution that is equivalent
to a standard Gaussian divided by a uniform(0,1).

smooth 1) Stat. a non-linear model of data, often created with a non-
parametric method. This is most commonly univariate, but need not
be.

source 1) S. the process of making S objects from an ASCII representation of
the objects. This is done with the source function, but more loosely may
refer to use of restore, data.restore and redirection of standard-in.

source code 1) Comp. the software as written in a language like C or Fortran
that created a program. This usually refers to code for a compiled
language, but may also refer to code from an interpreted language
like S. See also compile, object code.

sparse matrix 1) Math. a matrix that contains a large number of zeros.

special value 1) Comp. a number-like entity: an infinity or not-a-number.

spline 1) Math. a function that is a piece-wise polynomial of a certain degree,
often with the constraint that the function and a certain number of its
derivatives are continuous.

SQL 1) Comp. acronym for “Structured Querry Language”, the lingua franca
of database management programs.

stable 1) Comp. a procedure that is robust (meaning 2).

S Poetry c©1998 Patrick J. Burns v1.0



404 GLOSSARY

stable distribution 1) Stat. a family of distributions that is very interesting
from a theoretical view, but has found little practical use except for the
Gaussian and Cauchy distributions which are special cases.

stable sort 1) Comp. any sorting method that ensures that, in the case of
ties in the variables used to sort, observations within a tie retain their
original order.

stack 1) Comp. a data structure in which items are added to and extracted
from the same place, also called FILO for “first in, last out”. The image
is of a spring-loaded container for plates—new items are pushed onto the
stack, and items are popped off of the stack. Compare queue. See also
push, pop.

standard deviation 1) Stat. the variability of a probability distribution,
defined as the square root of the variance.

standard error 1) Stat. the variability of an estimate, defined as the square
root of the variance.

standard-error 1) Unix. the place where error messages go. Usually this is
the screen.

standard-in 1) Unix. the place where information comes from. Usually this
is the keyboard.

standard-out 1) Unix. the place where information goes. Usually this is the
screen.

star 1) Comp. slang for the asterisk, the character “*”. Often used to mean
multiplication, but it has other meanings as well.

static load 1) Comp. the addition of code (symbols) to the executable
of a program when it is not running. That is, a new, larger executable
is created. In S this is done with the LOAD utility. Compare dynamic
load.

statlib 1) a repository of software and other information pertaining to Statis-
tics. It includes a large section of contributed software for S. Accessible
on the world wide web with http://lib.stat.cmu.edu/.

status 1) Unix. the return value of a Unix program that indicates the error
state—zero, by convention, means no error.

storage mode 1) S. sub-types of mode numeric. The possibilities are integer,
double and single.

stream 1) Comp. a conceptually unending series of pieces of information. An
example is input from a keyboard.

string 1) Comp. a sequence of characters.

S Poetry c©1998 Patrick J. Burns v1.0



405

subscript 1) Comp. the extraction (or replacement) of part of an object. In
S and C this is done with brackets. 2) text that is written lower (and
generally in a smaller font) than the regular text. In this sense, opposed
to superscript.

swap-space 1) Comp. portion of disk-space reserved for overflow from RAM.

swapping 1) Comp. the process of switching information between RAM and
swap-space so that all information required for the pending computation
is in RAM. Also known as “paging”.

symbol 1) Comp. a character string that identifies a compiled routine—
often with underscores added to the routine’s name. 2) S. the mark
put at the location of a datapoint in a plot.

symbol table 1) Comp. a table kept by a program that relates symbols to
addresses.

symbolic computation 1) Comp. mathematical computation, such as simpli-
fication and factoring, where some of the “numbers” are variable names.

symmetric matrix 1) Math. a square matrix that is equal to its own
transpose. Compare Hermitian matrix.

syntax 1) Comp. the rules governing how expressions are made in a language,
without regard to what the expressions mean. The syntax affects the
parsing of an expression. Compare semantics.

system terminating 1) S. the action that S takes when it thinks something
bad (usually inside calls to .C or .Fortran) has happened. S kills itself
to make sure that no permanent data become corrupted.

tab 1) character written as backslash-t in S and C that represents some number
of blank spaces. Counts as white space.

table See contingency table, symbol table, lookup table.

tera- 1) prefix meaning 1012 (or 240), as in terabytes of data.

three-dots 1) S. the construct “...” used to accept an arbitrary number of
arguments in a function.

tick 1) Comp. mark along the axis of a graph indicating a value for that
location.

tilde 1) the character “˜” used in S to denote a formula.

time 1) Comp. an ambiguous concept on time-sharing computers since there is
a difference between the total elapsed time from start to finish of a task
(“wall time”) and the time actually expended on the task (“computer
time”).

S Poetry c©1998 Patrick J. Burns v1.0



406 GLOSSARY

time series 1) Stat. a dataset where observations are at a sequence of time
points, generally evenly spaced time points.

title 1) S. one of two high-level graphics parameters that label a graph.
The main title is written at the top of the figure, the sub title is at the
bottom. The titles appear in the margin.

token 1) Comp. an element of a parsed expression.

trace 1) Math. the sum of the elements on the diagonal of a matrix. 2) S. the
process of modifying functions so that they produce some information
when called, used for debugging.

transpose 1) Math. operation in which the rows of a matrix are interchanged
with its columns.

tree 1) Math. a (connected) mathematical graph that contains no loops. See
also binary tree, classification tree, regression tree.

trellis 1) S. system of graphics functions that focus on displaying multi-
variate data in a simple and comprehensible manner.

triangular matrix 1) Math. a matrix in which there are all zeros above the
diagonal (lower triangular), or below the diagonal (upper triangular).

tridiagonal matrix 1) Math. a matrix in which the only non-zero elements
are on the diagonal and the diagonals immediately above and below the
diagonal. Compare to diagonal matrix.

truncate 1) Math. a relative of rounding, but the least significant digits or
bits are just dropped with no change to what is left. Comare rounding.

type 1) S. a high-level graphics parameter that specifies how the data
are to be represented in the graph. Choices include points, lines, high-
density or none.

unary 1) Math. an operation on a single entity, for example “unary minus” to
change the sign of a number. Also called “monadic”.

underflow 1) Comp. the event in which a non-zero number becomes indistin-
guishable from zero due to finite-precision arithmetic. Generally, this is
of little consequence.

underscore 1) the character “ ”, used in S to mean assignment, used in C
within variable names.

univariate 1) Stat. a situation involving a single distribution. Compare to
multivariate.

S Poetry c©1998 Patrick J. Burns v1.0



407

unstable 1) Comp. a computation that can be inaccurate due to numerical
error or some other phenomenon. For example, dividing by a number
close to zero is an unstable operation. The opposite of robust (meaning
2).

utility 1) S. an operating system command started by S. Examples are BATCH
and LOAD.

value 1) Comp. often used in the sense of what is returned by a function
(return value), as opposed to its side effects.

vector 1) S. an atomic object (common usage). 2) S. an object with no
attributes (the definition that as.vector and is.vector use). 3) S. an
object of one of many modes that allows an arbitrary length. 4) Math.
an ordered collection of numbers.

vectorization 1) S. a function is vectorized when the output can contain an
arbitrary number of answers. 2) Comp. computations are vectorized by
some (super) computers. 3) Math. the columns of a matrix stacked
on top of each other to form a vector. This is indicated by the “vec”
operator, and is equivalent to an S matrix being treated as a simple
vector.

version 3 1) S. the version of S that has existed since the early 1990’s.

version 4 1) S. the version of S first appearing in 1998 that allows the equal sign
to mean assignment and numerous other changes. Confusingly, S-PLUS
Version 4.0 is based on Version 3 of S.

vertex (plural vertices or vertexes.) 1) Math. a part of a mathematical graph
that is usually represented by a point—also called node.

virtual memory 1) Comp. swap-space.

wall time 1) see time.

warning 1) Comp. an error-like condition that does not interrupt computa-
tion, but merely issues a message.

white book 1) S. Chambers and Hastie (1992) Statistical Models in S.

white space 1) Comp. any of the characters “space”, “tab”, and sometimes
“newline”.

wildcard 1) Unix. The style of specification of multiple file names used by
ls and some other commands. Compare to regular expression.

word 1) Comp. a byte.

workaround 1) Comp. a temporary fix for a bug. 2) Comp. a method of
avoiding a bug by going a different route.

S Poetry c©1998 Patrick J. Burns v1.0



408 GLOSSARY

working database 1) S. the database that is first on the search list.

WYSIWYG 1) Comp. (pronounced WIZZ-ee-Wig) an acronym for “What
you see is what you get.”

S Poetry c©1998 Patrick J. Burns v1.0



Index

˜ : 291, see formula
+.rationalnum: 246
-.rationalnum: 247
.Argument mode: 215
.Audit: 160, 187, 194
.Auto.print: 45, 220
.C: 30, 139, 258

pointers argument: 177, 178
specialsok argument: 175

.Cat.Help: 193

.Class: 225

.Data: 39, 187–188

.First: 44, 155, 190

.First.lib: 40

.First.local: 45

.Fortran: 30, 139, 183

.Generic: 225, 252

.Group: 225

.Help: 187, 193

.Internal: 18, 208, 218, 225

.Last: 44

.Last.value: 4

.Machine: 8, 90, 239

.Method: 225

.Options: 219, 220

.Random.seed: 57, 110, 111

.privateFirst: 45
: operator: 95, 125
<<-: 26, 138
= versus ==: 182
? operator: 69, 70
[: 5–8, 10–13

with drop: 10, 32, 122, 281,
304

[.mathgraph: 303
[.rationalnum: 250
[.stack: 228

[.verify: 57
[<-.mathgraph: 304
[<-.stack: 229
[[: 9–10, 203

difference with [: 10
with vector: 203, 352

$: 8, 9
%e%: 207
%in%: 207
&: 95
&&: 95
BIG: 188
BIGIN: 188
nonfile: 187

abbreviate: 84
abbreviation: 6, 9, 19, see unabbrev.value

disallowed: 19
Abelson, Harold: 37, 367
abind: 290
Abramowitz, M.: 260, 267, 270, 274,

367
abs.rationalnum: 253
abscissa: 371
abstraction: 23–24, 27, 30, 276, 365
add argument: 15
ADDKEYWORD: 193
address: 20, 21, 371
adjacency matrix: 310
adjamat: 311
adjamat.mathgraph: 310
aggregate: 371
AIC: 371
Akaike, H.: 371
algorithm: 371
alias: 371
alias (Unix): 158

409



410 INDEX

all: 95
all.equal: 57, 126, 326, 359
all.vars: 212
alldirected.mathgraph: 306
alpha version: 371
alphanumeric: 371
ampersand: 371
analysis of variance: 114
and: 95
anonymous: 28
anova: 114
ANSI C: 168
any: 95
aov: 114
aperm: 87–89, 288, 325
apply: 18, 75–77, 287, 323
approx: 109
apropos (Unix): 164
arbitrary limits: 30
arbitrary number of arguments: 19
argument: 371

arbitrary number of: 19
capturing as written: 102
creating: 352
matching: 19, 371
optional: 19, 395
required: 19, 400

argument name: 27
capitalized: 27
same as function: 145

ARIMA: 114
arithmetic operators: 4
array: 372

generalization of row: 116
one-dimensional: 124
permuting: 87
ragged: 79
S: 3
subscripted as vector: 11

array function: 85
as.character: 98, 122, 132–134
as.double: 122
as.matrix: 122, 141
as.name: 296
as.numeric: 134
as.numeric.rationalnum: 251

as.rationalnum: 246
as.vector: 121, 122
ASCII: 2, 90, 93, 96, 129, 372
AsciiToInt: 117, 279, 280
aspect ratio: 372
assembly code: 51, 372
assign: 99–101, 105, 214, 324, 355
assignment: 214, 243, 372

speed of: 58
assignment function: 202, 248, 372

create local object: 202, 220,
228

association: 16, 372
asymptotic: 372
at (Unix): 160
at sign: 372
atomic: 1, 201, 372
attach: 372
attach: 39, 156
attributes: 3, 121, 122, 372
attributes: 361
Auden, W. H.: 252
AUDIT: 194–195
audit: 187, 373

stopping: 160
augmented matrix: 63
autocorrelation: 114
awk (Unix): 164
axis: 373

label: 16

background: 373
background (Unix): 157, 223
background color: 373
backquote: 157, 373
backslash: 2, 373
backsolve: 86
backup: 355
backward-compatibility: 31, 36, 373
bad address: 179, 451
Bak, J.: 353, 367
bang: 373
barplot: 15
base, changing: 235–242
BATCH: 138, 157, 159, 188, 356
batch: 373

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 411

batch file, checking: 188
Bates, Doug: 118, 367
Becker, Rick: 3, 21, 22, 70, 178, 233,

367, 374
benchmark: 373
Bentley, Jon: 37, 59, 149, 152, 367
Beran, Jan: 118, 367
beta test: 373
beta version: 373
bias: 373
binary file: 373
binary number: 374
binary tree: 374
bind.array: 289
binning: 86
Bishop, Elizabeth: 138
bit: 374
bivariate: 374
black-box test: 52
Blake, William: 25, 103
BLAS: 374
blue book: 374
body: 221, 374

combining: 352
bootstrap: 374
Bourne shell: 156, 374
box: 374
box constraint: 109, 331, 374
Box, G. E. P.: 393
boxplot: 374
brace: 17, 374
bracket: 374
brain-dead: 375
break: 87, 204
breathe: 149
Breiman, Leo: 118, 367
Brooks, Gwendolyn: 200, 208
browser.default: 138
browser: 138, 139, 142, 208, 214,

223, 224
buffer: 375
bug: 23, 35, 36, 56, 98, 130, 140–

149, 375
first-only: 53
intermittent: 151
one-off: 53

silly: 149
bug report: 150–151
build.mathgraph: 299, 301
building blocks: 25
bus error: 179
by: 80
byte: 375

c: 123, 136, 352, 353
C language: 167–186

ANSI: 168
call S: 178
comma: 182
continue: 170
debugging: 179–180
declaration: 168, 171
dereference: 168, 380
fflush: 180
for: 170
header file: 171
inf set: 263
int: 179
integer division: 181
inverse complex: 264
is inf: 175, 263
is na: 175, 263
long: 179
macro: 175, 391
malloc: 175
missing value: 175
modulo operator: 169
mult complex: 264
na set3: 175, 263, 264
name: 167
norm rand: 176
operators: 169
optimization: 180
pointer: 168, 397
pointer to pointer: 173
portopt one Sp: 340
preprocessor: 171, 397
print: 182
printf: 180, 182
PROBLEM: 176
RECOVER: 176
S.h file: 171, 180, 185, 191, 266

S Poetry c©1998 Patrick J. Burns v1.0



412 INDEX

S alloc: 175, 177
S realloc: 177
seed in: 176
seed out: 176
special value: 175
static: 173
stdout: 180
strings.h: 278
structure: 171
switch: 170
unif rand: 176
WARNING: 176

C shell: 156, 375
history: 156

c.mathgraph: 307, 308
c.rationalnum: 251
cache: 375
call: 375

combining: 353
call: 218, 324
call

quick: 399
call component: 102, 129, 215, 356
call mode: 202, 296
call S (C): 178
canonical correlation: 375
capitalized argument name: 27
Capricious Rule 1: 23, 25, 27, 28,

30, 149, 179
carriage return: 375
case-sensitive: 4, 375
cat: 47, 92, 93, 96, 139, 141, 189
cat (Unix): 159
categorization of functions: 70
category: 375
category: 117
CATHELP: 193
cbind: 258
ceiling: 375
central processing unit: 375
cex parameter: 15
Chachra, V.: 318, 367
Chambers, John: 3, 21, 22, 70, 118,

178, 233, 334, 367, 374, 407
chaos: 375
Chaplin, Charlie: 138

CHAPTER: 191
character: 2, 376
character: 196
characteristic: 376
characteristic function: 376
charmatch: 94, 95
child: 376
chmod (Unix): 158, 160
chol: 107, 285, 286
choleski: 107
Christiansen, Tom: 282, 369
chull: 109
class: 376
class: 14, 97
classification tree: 115, 376
Cleveland, William: 118, 368
cleverness: 35, 313
clustering: 376
codes: 133
coercion: 17–18, 247, 376

to integer: 124
col: 86, 116
col generalized: 116
Coleridge, Samuel Taylor: 356
collision: 376
column-major order: 376
combination: 376
comma

in C: 182
in S: 206

command line editing: 42, 376
comment: 35, 37, 352, 377

multiline: 171
commitment: 214, 359, 377
commontail: 309
commute: 377
compacting: 63, 377
comparison operator: 18, 377
COMPILE: 171, 191
compile: 377
compile-time: 377
compiled language: 377
complex: 377
complex number: 2, 125, 262, 319,

377
component: 3, 377

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 413

condition number: 107, 377
conditional distribution: 377
conditioning plot: 378
confounded: 378
confusion matrix: 378
conjugate: 378
conjugate gradient: 327
consistency: 27–29, 365
constant: 378
constrained nonlinear regression: 115
constraint: 200, 378

box: 109, 331, 374
linear: 390
penalty for: 335

constrast: 378
contingency table: 378
continuation: 47, 378
continue (C): 170
continue option: 47
continue.fraction: 269, 270
continued fractions: 268–272
continuous variable: 378
contour: 109
contour integral: 320
contour plot: 378
control: 379

source: 48–51, 280
control argument: 334, 341
control key: 223
control operator: 95, 96, 379
convention

naming: 27
convergence

false: 383
convex hull: 109
convolution: 109
coordinates

polar: 397
rectangular: 400

correlation
auto: 114
canonical: 375
cross: 114

CPU: 379
crash: 379
critique of S: 36

crontab (Unix): 160
cross-correlation: 114
cross-validation: 379
CSH: 195
cummax: 18
cummings, e. e.: 29
cumprod: 18
cumsum: 18
cursor: 379
cut: 86
cut and paste: 379
cylinder: 200

D: 108
Darnell, P.: 186, 368
data frame: 11, 122, 379

attaching: 40
containing matrix: 294

data hiding: 26
data.class: 97
data.dump: 49, 51, 96, 129, 191
data.frame: 141, 226, 294
data.restore: 96
database: 39–40, 379

working: 39, 202, 408
database 0: 28, 100, 210
date

julian: 388
Davis, Alan: 68, 368
Day-Lewis, Cecil: 135
dblepr (Fortran): 183
dbx: 139
debug: 379
debugger: 137, 148, 223, 293
debugging: 135–152

example: 140–149
in C: 179–180
strategy: 149–150

decimal number: 379
declaration: 167, 168, 171, 379
decomposition: 379
default: 379
delay.eval: 217
density: 380
deparse: 380
deparse: 98, 102, 254, 299, 302

S Poetry c©1998 Patrick J. Burns v1.0



414 INDEX

dependent: 380
deque: 380
dereference (C): 168, 380
deriv: 108
derivative: 380

symbolic: 108
detach: 40
deviance: 380
diag: 85
diag.default: 217
diagnostics: 380
diagonal matrix: 286, 380
Dickinson, Emily: 94
diff: 87
diff (Unix): 43, 160
differencing: 87
differential equation: 109
differentiation: see derivative
differentiation

numerical: 394
diffmask: 43
diffsccs: 49, 51, 280
digamma: 267
digamma function: 256, 262–268
digits

significant: 402
digits option: 46, 143
dim: 3, 124, 202, 225
dimnames: 3, 140, 141
directory: 380
directory stack: 163
disk-space: 19
distribution: 380

conditional: 377
Gaussian: 384
joint: 388
long-tailed: 391
marginal: 391
posterior: 397
prior: 397
slash: 403
stable: 404

distribution function: 380
distribution-free test: 380
distrust: 27, 53, 318
do.call: 103, 308, 331

documentation: 34–36
Dostoevesky, Fyodor: 362
dot plot: 381
dot product: 381
dotFirst.q: 44
double: 128
double negative: 345
double quote: 157, 381
double-precision: 381

reading: 91
dput: 43, 201
drop argument: 10, 32, 122, 281,

304
drop function: 33
dump: 381

error: 137
dump: 49, 51, 94, 96, 129
dump.calls: 47, 137
dump.frames: 47, 137
dyn.load: 24, 129, 172
dyn.load.shared: 172
dyn.load2: 24, 172
dynamic graphics: 381
dynamic load: 172, 381
dynamic programming: 381

echo: 381
edge: 297, 381
editing: 135
effect: 381
efficiency: 71, 381
eigen: 107, 216, 286
eigenvalue: 382
eigenvector: 382
element: 1, 382
ellipsis: 382
EM algorithm: 382
emacs editor: 42
empty string: 196
environment (Unix): 153
environment variable (Unix): 153–

155, 382
EOF: 382
erase key: 162
error: 382

dump: 137

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 415

handling: 382
ignoring: 215
message: 33, 34, 98, 218
numerical: 124, 242, 394
silly: 149
rounding: 401

error option: 47, 137, 216
escape: 153, 382

in string: 2
key: 42
to Unix: 126, 206

Euclid’s algorithm: 244
Euler’s constant: 267
eval: 57, 103, 215, 217, 218, 254,

299
evaluation: 206, 382

lazy: 213, 217, 389
evaluation frame: 382, see memory

frame
event: 382
exclusive or: 96
EXEC: 195
executable: 158, 382
exists: 24, 57, 98, 210
exp: 209
exp.integral: 272
expand: 356
expand.grid: 254
expand.twomat.reduced: 359
expected value: 383
expense

minimizing: 36
explanatory variable: 383
exponential integral: 270
exponential notation: 383
expression: 383

regular: 400
expression: 202, 324
expressions option: 240
extraction: 383, see subscripting

factanal: 114
factor: 130–134, 383
factor: 117
factor analysis: 114
factorial: 383

false convergence: 383
family: 383
FAQ: 383
fast Fourier transform: 109
feature: 383

undocumented: 106
fflush (C): 180
fft: 109
field: 90, 383
FIFO: 383
figure: 16, 383
Figure a Poem Makes, The: 27
file: 153, 156, 383

permission: 160
filetest: 162, 348, 352
FILO: 383, see stack
filter: 18
find: 43, 116, 210
find (Unix): 161
find.assign: 211
find.I.of: 280, 301
find.objects: 116, 207
first-only bug: 53
fix: 138
fixed format: 91, 384
fixed-width font: 384
fjj.jsa20sum: 336
fjjartshow: 105
fjjartshow2: 106
fjjcheckdigam: 267
fjjcheckdigamcom: 267
fjjcheckexpint: 270
fjjcheckexpintcomp: 271
fjjchecknumberbase: 241
fjjcheckpolygam: 260
fjjcheckrationalnum: 253
fjjcheckratop: 254
fjjcomma: 62
fjjcylinder: 198–200
fjjdigamdup: 268
fjjdigamreflect: 268
fjjexp.integral: 270
fjjgenop1: 327
fjjgentest1: 329
fjjinterpolator.lagrange: 323
fjjline.integral: 319

S Poetry c©1998 Patrick J. Burns v1.0



416 INDEX

fjjlog2: 220
fjjmiss1: 26
fjjmiss2: 26
fjjpolygammult: 261
fjjrowmin: 12
fjjtwomat: 357
flag: 384
Flannery, B.: 270, 271, 274, 369
flesh is grass: 28
floating-point number: 384
floor: 384
font: 384

fixed-width: 384
fools and liars: 35
for: 18, 61, 62, 65–68, 75, 127–129,

170, 204
for (C): 170
format: 47, 62, 93, 278
formula: 203, 208, 291–318, 384

manipulating: 296
Fortran: 182–185

dblepr: 183
implicit none: 183
input/output: 182
intpr: 183
realpr: 183
xerror: 184
xerrwv: 184

foul urges: 149
Fourier transform: 109
fragmented memory: 61, 62, 129,

384
frame: 384

data: 379, see data frame
evaluation: see memory frame
graphics: 15, 385
memory: 392, see memory frame

frame 0: see database 0
frame 1: 100, 210, 220
frame function: 15
Francis, Robert: 179
Friedman, Jerome: 118, 367
from.base10: 238
Frost, Robert: 27, 31, 156, 365
function: 384

arguments: 19, 352

as return value: 322–326, 348–
353

categorization of: 70
length of: 202, 352
pedestrian: 81

function mode: 202
functional language: 213, 384

gam: 115
gambol: 224
garbage collection: 384
garbage compacting: 63
garbage test: 53, 240
Gaussian distribution: 384
Gay, David: 338, 353, 368
Geisel, Theodor: 206
generalized additive model: 115, 385
generalized linear model: 114, 385
generating random number in C: 176
generic function: 13, 223, 385

argument of: 128
debugging: 139
group: 225
internal: 225
operator: 224

genetic algorithm: 327–338, 385
genopt: 331, 335
genopt.control: 334
Gentleman, Robert: 399
get: 43, 98, 99, 146–148
get.default: 149
getenv: 45
getpath.adjamat: 314
getpath.incidmat: 314
Ghare, P. M.: 318, 367
gigabyte: 385
glm: 114
global variable: 26, 210, 212, 385
global.vars: 212
Goldberg, D. E.: 353, 368
Golub, Gene: 290, 368
gotcha: 385
gradient: 109, 385
graph: 385

mathematical: 297–317
graphical user interface: 385

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 417

graphics: 15–16, 113
graphics device: 15, 385
graphics frame: 15, 385
graphics function

high-level: 15, 387
low-level: 15, 391

graphics parameter: 15, 385
high-level: 387

gray scale: 386
great.common.div: 244
greatest common divisor: 245, 273
greedy algorithm: 386
Gregory, R.: 273, 274, 369
grep (Unix): 159
grep function: 83
group: 386

of generic functions: 225
GUI: 386

hack: 386
hacker: 155, 386
Hadamard product: 386
Hamming, R.: 274, 368
hang: 386
hard-coded: 31, 386
hash symbol: 386
hash table: 47, 103, 104, 228, 386
Hastie, Trevor: 21, 118, 233, 334,

367, 368, 407
hat: 386
hat matrix: 386
head (Unix): 159
header file (C): 171, 387
Heiberger, Rich: 290
Heller, Joseph: 363
help: 69, 70
help file: 49, 387

installing: 192
keyword: 193
multiple objects in: 192
writing: 34–35

help.findsum: 193
help.start: 69
Hermitian matrix: 387
Hessian: 387
hexadecimal: 387

high-level graphics function: 15, 387
high-level graphics parameter: 387
Hildebrand, F. B.: 353, 368
HINSTALL: 192
histogram: 387
history: 194
hobgoblin

of small minds: 27
Holland, John: 353, 368
HOME: 153
hook: 387
horse

who bit: 28
hostname (Unix): 188
Housman, A. E.: 53, 138
hubris: 25, 30
hypothesis tests: 113

I: 296, 301
I/O: 388
idempotent: 387
identify: 113
if

unnesting: 208
if: 17, 95, 96, 204
ifelse: 95, 96
ignore.error: 215
ignored object warning: 136
Ihaka, Ross: 399
image: 109
immediate argument: 99, 100, 105,

214, 359
impatience: 25
implicit none (Fortran): 183
incidmat.mathgraph: 312
increment (C): 167
independent: 387
index: 387
indirection: 24, 387
Inf: 2
inf set (C): 263
information matrix: 387
inheritance: 14, 226, 227, 304, 306,

388
inherits: 102
input/output: 388

S Poetry c©1998 Patrick J. Burns v1.0



418 INDEX

Fortran: 182
inspect: 139, 146, 147
int (C): 179
integer: 125, 388
integer: 128
integer division (C): 181
integer programming: 388
integer.max: 240
integrate: 107, 321
integration

numerical: 107, 319–322, 394
interactive: 388
interactive function: 138
interlude: 59, 220
intermittent bug: 151
internal generic function: 225
interp: 109
interpolation: 109, 322–327
interpolator.lagrange: 325
interpreted language: 388
interquartile range: 388
interrupt: 223
interrupt signal: 138, 159, 223, 388
intpr (Fortran): 183
inverse of a matrix: 86
inverse complex (C): 264
invisible: 388
invisible: 45, 92, 107, 220
IQR: 388
is.array: 122
is.integer: 124, 125
is.loaded: 129
is.matrix: 122
is.na: 97, 127
is.na.rationalnum: 249
is.nan: 2
is.nan.rationalnum: 250
is.numeric: 125
is.vector: 121, 122
is inf (C): 175, 263
is na (C): 175, 263
iter.max argument: 28
iteration: 388
ivp.ab: 109

Jeffers, Robinson: 71

Jennison, Chris: 329, 335, 368
jjtest3: 344
joint distribution: 388
julian date: 388
justify: 278–279, 388
justify: 278

K: 388
keep option: 47, 104
kernel: 389
Kernighan, Brian: 37, 186, 368
key binding: 389
keyword in help file: 193
kill (Unix): 159
kilobyte: 389
kludge: 389
knap-sack problem: 335, 389
Knuth, Donald: 233, 245, 273, 274,

368
kronecker product: 109, 389

labels: 389
labels: 132
lag: 126
Lagrange interpolation: 322–327
language: 1, 389

compiled: 377
functional: 213, 384
interpreted: 388
modes: 201
natural: 393

LAPACK: 389
lapply: 14, 18, 27, 75, 77, 78, 279,

309
last.dump: 137
Lawrence, D. H.: 101
laziness: 25
lazy evaluation: 213, 217, 243, 291,

295, 389
ld (Unix): 172
leaps: 30
least absolute deviations: 114, 389
least squares: 389
legend: 389
length: 1, 389

of a function: 202, 352

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 419

zero: 3, 125, 195–200, 258
length: 128, 129
length option: 47
length.mathgraph: 303
length.rationalnum: 249
levels: 390
levels: 132
lgamma: 256
lib.loc: 24, 40
Libes, Dan: 186, 368
library: 390
library: 24, 40
LICENSE: 195
likelihood: 390
limit

arbitrary: 30
limitation: 390
line.integral: 320, 322
linear constraint: 390
linear programming: 390
lines: 15
link: 390
link (Unix): 160
link function: 114, 390
linked list: 390
lint (Unix): 180
Lisp: 37, 231
list: 3, see search list

attaching: 40
combining: 123
component of: 3

list: 3, 128
literal: 390
lm.fit.qr: 61
ln (Unix): 160
LOAD: 172, 191
load: 390

dynamic: 172, 381
static: 172, 404

loan: 226, 227
local regression: 115
local.Sqpe: 191
locator: 113
loess: 115
log: 209, 219
log10: 261

logical: 2, 391
subscripting with: 7

logical operator: 95, 96
logistic regression: 114
long (C): 179
long-tailed distribution: 391
lookup table: 391
looping: 18–19, see vectorization,

see apply, see for
speed of: 18

Loukides, Mike: 49, 164, 369
low-level graphics function: 15, 391
lower case: 276
lower.tri: 86
LP: 391

machine dependent: 391
macro (C): 175, 391
Magarshack, David: 362
Maindonald, John: 131
make (Unix): 160, 161, 191
make.names: 84
malloc (C): 175
man (Unix): 159
man page: 391
mandatory space: 127
mantissa: 391
margin: 16, 391

outer: 16, 395
marginal distribution: 391
Margolis, P.: 186, 368
Marlowe, Christopher: 19
MASKED: 193
masked: 136, 137, 193
masking: 39, 135–137, 193, 391
match: 32, 45, 71–73, 212
match.call: 102, 215
Math group: 225
Math.rationalnum: 252
mathematical graphs: 297–317
Mathews, John: 353, 368
mathgraph: 297
matrix: 107, 122, 285–391

adjacency: 310
augmenting: 63
confusion: 378

S Poetry c©1998 Patrick J. Burns v1.0



420 INDEX

diagonal: 286, 380
hat: 386
Hermitian: 387
in C: 173
in data frame: 294
information: 387
inverting: 86
orthogonal: 395
S: 3
singular: 403
sparse: 403
square root: 285
symmetric: 405
triangular: 107, 285, 406
tridiagonal: 406

matrix class: 32, 142
matrix function: 85
max: 97, 98, 243, 321
maximum likelihood estimation: 392
McCullagh, Peter: 118, 369
Mead, Philip: 204
Mead, R.: 369, 402
mean: 392
median: 392
meg: 392
megabyte: 392
memory: 20, 392

fragmented: 61, 62, 129, 384
in loops: 65
infinite: 361
monitoring: 60, 63
reducing: 60–68, 91, 356–360
virtual: 407

memory frame: 137, 208–211, 214–
215, 217, 218, 228, 294–296,
392

menu: 392
menu: 106
merge.levels: 116
method: 14, 226, 392

argument of: 128
methods function: 70
mfcol parameter: 15
micro-: 392
min: 97, 98
minimizing expense: 36

missing: 392
missing function: 26, 199
missing mode: 130, 199
missing value: 258, 392, see NA

in C: 175
mistake, splendiferous: 25
mixed effects model: 114
MLE: 392
mnb0 (Fortran): 341
mode: 1, 201–205, 392

.Argument: 215
“brace”: 221, 324
break: 204
call: 202, 296
categories of: 201
expression: 202
for: 204
function: 202
if: 204
list: 3
missing: 130, 199
name: 202, 204, 296
next: 204
repeat: 204
return: 204
unknown: 199, 200
while: 204

mode: 97, 211
model: 393
modular programming: 25, 393
modulo: 393
modulo operator: 169
modulus: 393
monadic: 393
Monte Carlo: 393
Moore, J. M.: 318, 367
motif: 15
ms: 109
mult complex (C): 264
multiple S sessions: 103
multitasking: 393
multivariate: 393
multivariate analysis: 114

NA: 2, 17, 126, 127
na set (C): 263

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 421

na set3 (C): 175, 264
name: 40–44, 393

as character: 98
conventions for: 27
in C: 167
invalid: 98, 99, 202
of function: 30
valid: 4, 277

name mode: 202, 204, 296
names: 121
names: 3
names as character: 99
names.mathgraph: 303
names.rationalnum: 248
names<-.mathgraph: 303
names<-.rationalnum: 248
NaN: 2, 393, see NA
nano-: 393
napsack: 335
nargs: 43, 201
natural language: 393
nchar: 82, 278
Nelder, John: 118, 369, 402
netlib: 394
newline: 2, 394
Newman, D. J.: 353, 367
Newton-Raphson: 327
next: 170
NextMethod: 226, 252
nlmin: 109, 338
nlminb: 109, 338
nlregb: 115
nls: 115
NM: 173, 192
nm (Unix): 192
node: 297, 394
nonlinear regression: 115
nonparametric: 394
norm: 394
norm rand (C): 176
not operator: 126
not-a-number: 394, see NA
NP-complete: 394
nroff (Unix): 193
NULL: 2, 125, 196, 197
null: 394

numberbase: 235, 236, 241
numeric: 394
numerical differentiation: 394
numerical error: 124, 242, 394
numerical integration: 107, 319–322,

394

O’Reilly, Tim: 49, 164, 369
object: 394
object code: 395
object-oriented programming: 13–

15, 24, 29, 223–227, 395,
see generic function, see in-
heritance

object.size function: 46
object.size option: 20, 46
objects: 1–4
objects: 41, 42
objects.summary: 42
octal: 395
Oedipus algorithm: 327
Olshen, Richard: 118, 367
on.exit: 43, 101, 220, 223
one-off bug: 53
OOP: 395, see object-oriented pro-

gramming
operating system: 395
operator: 395

comparison: 18, 377
control: 95, 96, 379
generic: 224
in C: 169
logical: 95, 96
user defined: 207

Ops group: 225
optimization: 327–353
optimization of C code: 180
optimize: 109
option: 45–48, 395

continue: 47
digits: 46, 143
echo: 93
error: 47, 137, 216
expressions: 240
keep: 99
keep: 47, 104

S Poetry c©1998 Patrick J. Burns v1.0



422 INDEX

length: 47
object.size: 46
prompt: 47
warn: 46, 47, 125, 137, 220
width: 47

optional argument: 19, 395
options: 45, 48, 125
or: 95

exclusive: 96
order: 81, 82, 89, 288
ordered: 117
organizing objects: 44–45
orthogonal matrix: 395
orthogonal vectors: 395
outer: 73, 74, 261, 270, 323, 325
outer margin: 16, 395
outlier: 395
overflow: 395
overload: 395

p-value: 396
p.replace: 73
p.unix.time: 41
package: 1
packed: 396
paging: 396
par: 15, 48, 101
parent: 396
parent of frame: 210
parenthesis: 396
parse: 135, 206, 396
parse: 57, 103, 106, 188, 254, 299,

324
password: 155
paste: 396
paste: 45, 74, 82, 98, 278, 301, 302
PATH: 158
pedestrian functions: 81
Peek, Jerry: 49, 164, 369
penalty for constraint: 335
Perl: 164, 275–278
perl: 275
permission: 396

file: 160
permutation: 89, 396

random: 112

permutation test: 396
permuting an array: 87
persp: 109
phone book code: 24
pi: 90
pico-: 396
pie: 113
pie chart: 113
pigment data: 207
pipe (Unix): 157, 396
pivot: 396
places searched for object: 210
Plate, Tony: 290
platform: 396
Plauger, P. J.: 37, 368
plot: 15, 113
plot area: 16, 397
plot.mathgraph: 317
pmatch: 94, 95, 258
pmax: 97, 98, 321
pmin: 97, 98, 107
poet.data.restore: 191
poet.dyn.load: 24
poet.verif: 55
pointer (C): 168, 397
pointer to pointer (C): 173
pointers argument to .C: 177, 178
points: 15
polar coordinates: 397
Polya, George: 37, 369
polygamma: 256
polygamma functions: 256–262
polygon: 106
polynomial: 109
polyroot: 30, 109
pop: 228, 397
popd (Unix): 163
PORT: 109, 338–353
portable: 397
portopt.control: 341
portopt1: 338, 341
portopt one Sp (C): 340
portoptgen: 338, 344, 345, 347, 348
portoptgen.ctemplate: 348
portoptgen.stemplate: 348
positive definite: 397

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 423

positive semidefinite: 397
posterior distribution: 397
PostScript: 397
postscript: 15
pound sign: 397
Pound, Ezra: 81
ppois: 112
precedence: 16–17, 397

table of: 16
predictor: 397
preprocessor (C): 171, 397
Press, W. H.: 270, 271, 274, 369
prim9: 20
prime numbers: 109
primes: 109
principal components: 114, 397
princomp: 114
print: 47, 92, 93, 139, 144, 145,

148, 220
print (C): 182
print method

writing: 92
print.default: 143
print.mathgraph: 300
print.matrix: 141–143
print.numberbase: 240
print.rationalnum: 245
print.stack: 230
printf (C): 180, 182
prior distribution: 397
private view: 14
prmatrix: 142
probability distribution: 111
PROBLEM (C): 176
proc.time: 223
process (Unix): 153, 398

parent: 153
product

dot: 381
Hadamard: 386
kronecker: 109, 389

profiling time use: 59
progexam library: 109
programming

steps of: 365
projection: 398

projection pursuit: 398
projection pursuit regression: 115
prompt: 398
prompt function: 34, 193
prompt option: 47
prose documentation: 34
ps (Unix): 159
pseudorandom number: 398, see ran-

dom number
public view: 14
push: 229, 398
pushd (Unix): 163

QP: 398
QQplot: 398
qr: 107
QR decomposition: 398
quad.form: 174
quadratic form: 174
quadratic programming: 398
quadrature: 107, 319–322, 398
quantile: 398
quartile: 398
questions on S-news: 151
queue: 231, 398
quick call: 208, 210, 399
quote

double: 2, 157, 381
single: 2, 157, 403

R: 231–232, 399
radian: 399
radix: 399

changing: 235–242
ragged array: 79, 399
RAM: 19, 20, 399
random access memory: 399
random algorithm: 399
random number

generating in C: 176
generator: 110

random permutation: 112
random seed: 399
range: 399
rank: 399
rank: 59

S Poetry c©1998 Patrick J. Burns v1.0



424 INDEX

Ransom, John Crowe: 275
rational numbers: 242–256
rationalnum: 242, 248, 252
rbind: 140
RCS: 48
read.table: 91
reading data: 90
readline: 105, 106
real-time: 399
realpr (Fortran): 183
Recall: 211, 239
record: 90, 400
RECOVER (C): 176
rectangular coordinates: 400
recursion: 211, 238–240, 400
recursive modes: 201
recursive object: 400
redirection: 97, 157, 400
reduce: 356
reduce.rationalnum: 243, 255
reduce.twomat: 357
redundancy: 23, 36, 44, 365
Reed, Henry: 19
register: 400
regression: 114

constrained: 114
constrained nonlinear: 115
least absolute deviation: 114
least trimmed squares: 114
local: 115
logistic: 114
M-estimation: 114
nonlinear: 115
projection pursuit: 115

regression test: 52, 400
regression tree: 115, 400
regular expression: 400
remove: 42, 95
rep: 29, 30
repeat: 204
replacement: 400, see subscripting
replication: 4, 29
REPORT: 189–191
required argument: 19, 400
reserved word: 87, 127, 400
resid: 224

residuals: 224
response: 400
restart: 215
restore: 97
return: 204
return value: 401
rev: 82, 309
Ripley, Brian: 21, 118, 369
Ritchie, Dennis: 186, 368
rle: 87
rm: 95
rmatsqrt: 286
rnorm: 111
Robinson, Edwin Arlington: 31
robust: 401

statistical: 113
Roethke, Theodore: 3, 30, 128
root: 109, 401
rounding: 124, 401
rounding error: 124, 401
row: 86, 116
row generalized: 116
row-major order: 401
RTFM: 401
rug: 401
rules of style: 37
run-length encoding: 87
run-time: 401

S-mode: 42
S-news: 401

questions to: 151
S.h file: 171, 180, 185, 191, 266
S alloc (C): 175, 177
S FIRST: 155, 157, 190
S PATH: 154
S realloc (C): 177
S SILENT STARTUP: 155, 190
S WORK: 154
s wsFe: 183
safe programming: 31–33
sample: 401
sample: 112
sapply: 78
SAS: 92
sas.get: 92

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 425

scalar: 401
scan: 90, 91
SCCS: 48
sccs: 49, 53, 192
Schwartz, Randal: 282, 369
scientific notation: 402
script: 402
search: 39
search for an object: 210
search list: 39, 154, 210, 402

not on: 99
seasonal decomposition: 114
Seber, G. A. F.: 118, 369
sed (Unix): 164
seed: 402

random: 399
seed in (C): 176
seed out (C): 176
selection: 402
semantics: 402
semicolon: 167
seq: 95, 128
session: 402
session database: 210, see database

0
set operations: 116
set.seed: 111
Shakespeare, William: 58
shar (Unix): 164
Sheehan, Nuala: 329, 335, 368
shell: 402

Bourne: 156, 374
C: 156, 375

shell (Unix): 156
shell variable: 155
Shelley, Percy Bysshe: 41
Shere: 44
SHOME: 158, 188, 189
SIC: 402
side effect: 402

admonishment against: 26, 356
signal: 223, 402

interrupt: 138, 159
significant digits: 402
silly error: 149
simplex algorithm: 402

simplicity: 25
Simpson’s method: 320
simulated annealing: 403
sin: 323
single quote: 157, 403
single-precision: 403
singular matrix: 403
singular value decomposition: 107,

403
sink: 93, 94
slash: 403
slice.index: 116
small minds

hobgoblin of: 27
Smith, Stevie: 117
smooth: 403
smooth: 115
solve: 86
soptions: 45, 126
sort: 81
sort

stable: 404
sort.list: 117
sort.mathgraph: 310
source: 403
source: 55, 96
source code: 403
source control: 48–51, 280
space

mandatory: 127
sparse matrix: 403
special value: 266, 403

C: 175
specialsok argument: 175
Spector, Phil: 21, 118, 178, 369
splendiferous mistake: 25
spline: 403
split: 75, 80
SQL: 403
Sqpe: 188
square root

symmetric: 285
stable distribution: 404
stable sort: 404
stable.apply: 288
stack: 228–231, 404

S Poetry c©1998 Patrick J. Burns v1.0



426 INDEX

directory: 163
stack: 228
standard deviation: 404
standard error: 404
standard-error: 157, 404
standard-in: 156, 404
standard-out: 156, 404
star: 404
state.name: 75, 276, 311
state.region: 75
static (C): 173
static load: 172, 404
statlib: 404
status: 404
stdout (C): 180
Stegun, I.: 260, 267, 270, 274, 367
steps of programming: 365
Stevens, Wallace: 196
Stone, Charles: 118, 367
stop: 33, 98, 218
storage mode: 179, 404
storage.mode: 97, 122, 125
stream: 404
string: 404

empty: 196
strings.h file: 278
structure: 201
structure (C): 171
stty (Unix): 161
style, rules of: 37
subscript: 405
subscripting: 5–13

drop argument: 10, 32, 122, 281,
304

empty: 12
of arrays: 10
of matrices: 32
with arrays: 11
with characters: 6
with logicals: 7, 12, 122, 280
with negative numbers: 6
with positive numbers: 5
with [[: 9

substifile: 277, 348, 352
substitute: 102, 217, 220, 254, 324
substring: 82, 278, 301

sum: 17
summary: 330
Summary group: 225
summary.interlude: 60
surprise: 27
Sussman, Gerald: 37, 367
Sussman, Julie: 37, 367
svd: 107
swap-space: 19, 405
swapping: 405
sweep: 74, 75
Swenson, May: 324
switch: 129, 170, 208
switch (C): 170
symbol: 173, 405

duplicate: 173
symbol table: 172, 405
symbol.address: 342
symbol.C: 129
symbol.For: 129
symbolic computation: 405
symbolic derivative: 108
symbolic link (Unix): 160
symmetric matrix: 405
symmetric square root: 285
symsqrt: 285
synchronize: 103–105, 139
syntax: 405
syntax error: 135, 137, 206
sys.call: 214
sys.frame: 214, 295
sys.nframe: 214, 295, 301, 302
sys.parent: 214, 295
system terminating: 56, 137, 139,

140, 179, 405

tab: 405
table

contingency: 378
hash: 103, 386
symbol: 172, 405

table: 86, 330
tail (Unix): 159
tapply: 79, 80
Taylor, Z. Todd: 132
tek4105: 15

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 427

tempfile: 43, 124
tennis: 138
tera-: 405
terminology, table comparing: 173
terms: 291
test

black-box: 52
garbage: 53, 240
regression: 52
white-box: 52

test (Unix): 162
test suite: 51–58
tetragamma: 256
Teukolsky, S. A.: 270, 271, 274, 369
TEX: 189, 190
text: see character

justify: 278–279
Thackeray, William Makepeace: 360
Theorem 1: 361
think

globally: 30
safety: 31–33

Thomas, Dylan: 161
Thoreau, Henry David: 4
three-dots: 19, 224, 251, 331, 405
throw away first version: 31
Tibshirani, Rob: 118, 368
tick: 405
tick label: 16
tilde: 203, 291, 405, see formula
time: 405
time series: 114, 406
time use: 58–60, 76–77, 219
timing: 58
title: 406

graphics: 16
tmp: 28
to.base10: 236
to.base10.sub: 240
token: 406
top-down programming: 30
topic: 117
trace: 406
trace: 60, 139, 141, 144, 145, 147
traceback: 137, 138, 142, 208
transcribe: 276, 277, 348

transpose: 406
trapezoid method: 320
tree: 406

binary: 374
classification: 376
regression: 400

tree: 115
trellis: 113, 406
triangular matrix: 107, 285, 406
tridiagonal matrix: 406
trigamma: 256
troff (Unix): 189
TRUNC AUDIT: 194
truncate: 406
truncating numbers: 124
twice: 362
twice-two: 362

umask (Unix): 160
unabbrev.value: 218, 278, 321
unable to obtain requested dynamic

memory: 20
unary: 406
unclass: 303, 310
underflow: 406
underscore: 406
understand the code: 149
undocumented feature: 106
unif rand (C): 176
uninterlude: 60
unique.mathgraph: 309
unique.rationalnum: 253
uniroot: 109
univariate: 406
Unix: 153–164

alias: 158
apropos: 164
at: 160
awk: 164
background: 157
Bourne shell: 156
C shell: 156
cat: 159
chmod: 158, 160
crontab: 160
diff: 43, 160

S Poetry c©1998 Patrick J. Burns v1.0



428 INDEX

environment: 153
environment variable: 153–155,

382
find: 161
grep: 159
head: 159
hostname: 188
kill: 159
ld: 172
lint: 180
ln: 160
make: 160, 161, 191
man: 159
nm: 192
nroff: 193
parent process: 153
pipe: 157, 396
popd: 163
process: 153, 398
ps: 159
pushd: 163
sed: 164
shar: 164
shell: 156
stty: 161
tail: 159
test: 162
troff: 189
umask: 160
vi: 42, 161
whereis: 161
which: 161

unix function: 84, 275, 278
unix.shell function: 84
unix.time: 41, 58, 219, 220
unknown mode: 199, 200
unlink: 43, 101
unpaste: 299
unstable: 407
update.loan: 226
upper case: 276
urges

foul: 149
UseMethod: 223, 224
utility: 188–195, 407

valid.s.name: 279
value: 407

special: 403
Van Loan, Charles: 290, 368
varcomp: 114
variance components: 114
vector: 1, 121, 407
vector function: 128
vectorization: 4–5, 269, 280, 320,

325, 407
Venables, William: 21, 118, 369
verify: 51–53, 57
version: 57
version 3: 13, 14, 28, 407
version 4: 13, 14, 28, 34, 407
vertex: 297, 407
Vetterling, W. T.: 270, 271, 274,

369
vi (Unix): 42, 161
virtual memory: 407
virtues: 25

Wagoner, David: 195
Wall, H. S.: 274, 369
Wall, Larry: 282, 369
warn option: 137
warn option: 46, 125, 220
warning: 407

coerce to error: 137
warning: 98
WARNING (C): 176
warnings: 98
Watts, Donald: 118, 367
Wharf, Benjamin: 121
whence: 210, 228
whereis (Unix): 161
which (Unix): 161
which.inf: 97
which.na: 97
which.nan: 97
while: 204, 236
white book: 407
white space: 407
white-box test: 52
width option: 47
Wild, C. J.: 118, 369

S Poetry c©1998 Patrick J. Burns v1.0



INDEX 429

wildcard: 407
Wilks, Alan: 3, 21, 70, 178, 233,

367, 374
Wodehouse, P. G.: 152
word: 407

reserved: 400
workaround: 36, 407
working database: 39, 202, 408
write: 93
write.table: 93
wrong answer: 33
WYSIWIG: 408

xerror (Fortran): 184
xerror.summary: 184
xerrwv (Fortran): 184
xor: 96

Yeats, William Butler: 149, 242
Young, D.: 273, 274, 369

zapsmall: 116
zero: 109
zero length object: 3, 125, 195–200,

258
Zukofsky, Louis: 167

S Poetry c©1998 Patrick J. Burns v1.0


