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Abstract

If you are using R and you think you’re in hell, this is a map for you.
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I wandered through http://www.r-project.org. To state the good I found
there, I’ll also say what else I saw.

Having abandoned the true way, I fell into a deep sleep and awoke in a deep
dark wood. I set out to escape the wood, but my path was blocked by a lion.
As I fled to lower ground, a figure appeared before me. “Have mercy on me,
whatever you are,” I cried, “whether shade or living human.”

“Not a man, though once I was. My parents were from Lombardy. I was
born sub Julio and lived in Rome in an age of false and lying gods.”

“Are you Virgil, the fountainhead of such a volume?”
“I think it wise you follow me. I’ll lead you through an eternal place where

you shall hear despairing cries and see those ancient souls in pain as they grieve
their second death.”

After a journey, we arrived at an archway. Inscribed on it: “Through me
the way into the suffering city, through me the way among the lost.” Through
the archway we went.

Now sighing and wails resounded through the starless air, so that I too
began weeping. Unfamiliar tongues, horrendous accents, cries of rage—all of
these whirled in that dark and timeless air.

1 Falling into the Floating Point Trap

Once we had crossed the Acheron, we arrived in the first Circle, home of the
virtuous pagans. These are people who live in ignorance of the Floating Point
Gods. These pagans expect

.1 == .3 / 3

to be true.
The virtuous pagans will also expect
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seq(0, 1, by=.1) == .3

to have exactly one value that is true.
But you should not expect something like:

unique(c(.3, .4 - .1, .5 - .2, .6 - .3, .7 - .4))

to have length one.

I wrote my first program in the late stone age. The task was to program
the quadratic equation. Late stone age means the medium of expression was
punchcards. There is no backspace on a punchcard machine—once the holes
are there, there’s no filling them back in again. So a typo at the end of a line
means that you have to throw the card out and start the line all over again. A
procedure with which I became all too familiar.

Joy ensued at the end of the long ordeal of acquiring a pack of properly
punched cards. Short-lived joy. The next step was to put the stack of cards
into an in-basket monitored by the computer operator. Some hours later the
(large) paper output from the job would be in a pigeonhole. There was of course
an error in the program. After another struggle with the punchcard machine
(relatively brief this time), the card deck was back in the in-basket.

It didn’t take many iterations before I realized that it only ever told me
about the first error it came to. Finally on the third day, the output featured
no messages about errors. There was an answer—a wrong answer. It was a
simple quadratic equation, and the answer was clearly 2 and 3. The program
said it was 1.999997 and 3.000001. All those hours of misery and it can’t even
get the right answer.

I can write an R function for the quadratic formula somewhat quicker.

> quadratic.formula

function (a, b, c)

{
rad <- b^2 - 4 * a * c

if(is.complex(rad) || all(rad >= 0)) {
rad <- sqrt(rad)

} else {
rad <- sqrt(as.complex(rad))

}
cbind(-b - rad, -b + rad) / (2 * a)

}
> quadratic.formula(1, -5, 6)

[,1] [,2]

[1,] 2 3

> quadratic.formula(1, c(-5, 1), 6)

[,1] [,2]

[1,] 2.0+0.000000i 3.0+0.000000i

[2,] -0.5-2.397916i -0.5+2.397916i
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It is more general than that old program, and more to the point it gets the
right answer of 2 and 3. Except that it doesn’t. R merely prints so that most
numerical error is invisible. We can see how wrong it actually is by subtracting
the right answer:

> quadratic.formula(1, -5, 6) - c(2, 3)

[,1] [,2]

[1,] 0 0

Well okay, it gets the right answer in this case. But there is error if we change
the problem a little:

> quadratic.formula(1/3, -5/3, 6/3)

[,1] [,2]

[1,] 2 3

> print(quadratic.formula(1/3, -5/3, 6/3), digits=16) [,1] [,2]

[1,] 1.999999999999999 3.000000000000001

> quadratic.formula(1/3, -5/3, 6/3) - c(2, 3)

[,1] [,2]

[1,] -8.881784e-16 1.332268e-15

That R prints answers nicely is a blessing. And a curse. R is good enough at
hiding numerical error that it is easy to forget that it is there. Don’t forget.

Whenever floating point operations are done—even simple ones, you should
assume that there will be numerical error. If by chance there is no error, regard
that as a happy accident—not your due. You can use the all.equal function
instead of 8 == 8 to test equality of floating point numbers.

If you have a case where the numbers are logically integer but they have
been computed, then use round to make sure they really are integers.

Do not confuse numerical error with an error. An error is when a com-
putation is wrongly performed. Numerical error is when there is visible noise
resulting from the finite representation of numbers. It is numerical error—not
an error—when one-third is represented as 33%.

We’ve seen another aspect of virtuous pagan beliefs—what is printed is all
that there is.

> 7/13 - 3/31

[1] 0.4416873

R prints—by default—a handy abbreviation, not all that it knows about num-
bers:

> print(7/13 - 3/31, digits=16)

[1] 0.4416873449131513

Many summary functions are even more restrictive in what they print:
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Table 1: Time in seconds of methods to create a sequence.

n grow subscript colon operator

1000 0.01 0.01 .00006
10,000 0.59 0.09 .0004
100,000 133.68 0.79 .005

1,000,000 18,718 8.10 .097

> summary(7/13 - 3/31)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4417 0.4417 0.4417 0.4417 0.4417 0.4417

Numerical error from finite arithmetic can not only fuzz the answer, it can fuzz
the question. In mathematics the rank of a matrix is some specific integer. In
computing, the rank of a matrix is a vague concept. Since eigenvalues need not
be clearly zero or clearly nonzero, the rank need not be a definite number.

We descended to the edge of the first Circle where Minos stands guard,
gnashing his teeth. The number of times he wraps his tail around himself
marks the level of the sinner before him.

2 Growing Objects

We made our way into the second Circle, here live the gluttons.

Let’s look at three ways of doing the same task of creating a sequence of
numbers. Method 1 is to grow the object:

vec <- numeric(0)

for(i in 1:n) vec <- c(vec, i)

Method 2 creates an object of the final length and then changes the values in
the object by subscripting:

vec <- numeric(n)

for(i in 1:n) vec[i] <- i

Method 3 directly creates the final object:

vec <- 1:n

Table 1 shows the timing in seconds on a particular (old) machine of these three
methods for a selection of values of n. The relationships for varying n are all
roughly linear on a log-log scale, but the timings are drastically different.
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You may wonder why growing objects is so slow. It is the computational
equivalent of suburbanization. When a new size is required, there will not be
enough room where the object is; so it needs to move to a more open space.
Then that space will be too small, and it will need to move again. It takes a lot
of time to move house. Just as in physical suburbanization, growing objects can
spoil all of the available space. You end up with lots of small pieces of available
memory, but no large pieces. This is called fragmenting memory.

A more common—and probably more dangerous—means of being a glutton
is with rbind. For example:

my.df <- data.frame(a=character(0), b=numeric(0))

for(i in 1:n) {
my.df <- rbind(my.df, data.frame(a=sample(letters, 1),

b=runif(1)))

}

Probably the main reason this is more common is because it is more likely that
each iteration will have a different number of observations. That is, the code is
more likely to look like:

my.df <- data.frame(a=character(0), b=numeric(0))

for(i in 1:n) {
this.N <- rpois(1, 10)

my.df <- rbind(my.df, data.frame(a=sample(letters,

this.N, replace=TRUE), b=runif(this.N)))

}

Often a reasonable upper bound on the size of the final object is known. If so,
then create the object with that size and then remove the extra values at the
end. If the final size is a mystery, then you can still follow the same scheme,
but allow for periodic growth of the object.

current.N <- 10 * n

my.df <- data.frame(a=character(current.N),

b=numeric(current.N))

count <- 0

for(i in 1:n) {
this.N <- rpois(1, 10)

if(count + this.N > current.N) {
old.df <- my.df

current.N <- round(1.5 * (current.N + this.N))

my.df <- data.frame(a=character(current.N),

b=numeric(current.N))

my.df[1:count,] <- old.df[1:count, ]

}
my.df[count + 1:this.N,] <- data.frame(a=sample(letters,
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Figure 1: The giants by Sandro Botticelli.

this.N, replace=TRUE), b=runif(this.N))

count <- count + this.N

}
my.df <- my.df[1:count,]

Often there is a simpler approach to the whole problem—build a list of pieces
and then scrunch them together in one go.

my.list <- vector(’list’, n)

for(i in 1:n) {
this.N <- rpois(1, 10)

my.list[[i]] <- data.frame(a=sample(letters, this.N

replace=TRUE), b=runif(this.N))

}
my.df <- do.call(’rbind’, my.list)

There are ways of cleverly hiding that you are growing an object. Here is an
example:

hit <- NA

for(i in 1:one.zillion) {
if(runif(1) < 0.3) hit[i] <- TRUE

}
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Each time the condition is true, hit is grown.

If you use too much memory, R will complain. The key issue is that R holds
all the data in RAM. This is a limitation if you have huge datasets. The up-side
is flexibility—in particular, R imposes no rules on what data are like.

You can get a message, all too familiar to some people, like:

Error: cannot allocate vector of size 79.8 Mb.

This is often misinterpreted along the lines of: “I have xxx gigabytes of memory,
why can’t R even allocate 80 megabytes?” It is because R has already allocated
a lot of memory successfully. The error message is about how much memory R
was going after at the point where it failed.

The user who has seen this message logically asks, “What can I do about
it?” There are two easy answers:

1. Don’t be a glutton by using bad programming constructs.

2. Get a bigger computer.

If you’ve obeyed the first answer and can’t follow the second, then your alter-
natives are harder. One is to restart the R session, but this is often ineffective.

Another of those hard alternatives is to explore where in your code the
memory is growing. One method (on at least one platform) is to insert lines
like:

cat(’point 1 mem’, memory.size(), memory.size(max=TRUE), ’\n’)

throughout your code. This shows the memory that R currently has and the
maximum amount R has had in the current session.

Yet another alternative is to store your data in a database and only extract
portions of the data into R as needed. While this takes some time to set up, it
can become quite a natural way to work.

A “database” solution that only uses R is to save (as in the save function)
objects in individual files, then use the files one at a time. So your code using
the objects might look something like:

for(i in 1:n) {
objname <- paste(’obj.’, i, sep=’’)

load(paste(objname, ’.rda’, sep=’’))

the obj <- get(objname)

rm(list=objname)

# use the obj

}
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Are tomorrow’s bigger computers going to solve the problem? For some people,
yes—their data will stay the same size and computers will get big enough to
hold it comfortably. For other people it will only get worse—more powerful
computers means extraordinarily larger datasets. If you are likely to be in this
latter group, you might want to get used to working with databases now.

If you have one of those giant computers, you may have the capacity to
attempt to create something larger than R can handle. See:

?’Memory-limits’

for the limits that are imposed.

3 Failing to Vectorize

We arrive at the third Circle, filled with cold, unending rain. Here stands
Cerberus barking out of his three throats. Within the Circle were the blas-
phemous wearing golden, dazzling cloaks that inside were all of lead—weighing
them down for all of eternity. This is where Virgil said to me, “Remember your
science—the more perfect a thing, the more its pain or pleasure.”

Here is some sample code:

lsum <- 0

for(i in 1:length(x)) {
lsum <- lsum + log(x[i])

}

No. No. No.
This is speaking R with a C accent—a strong accent. We can do the same

thing much simpler:

lsum <- sum(log(x))

This is not only nicer for your carpal tunnel, it is computationally much faster.
(As an added bonus it avoids the bug in the loop when x has length zero.)

The command above works because of vectorization. The log function is
vectorized in the traditional sense—it does the same operation on a vector of
values as it would do on each single value. That is, the command:

log(c(23, 67.1))

has the same result as the command:

c(log(23), log(67.1))

The sum function is vectorized in a quite different sense—it takes a vector and
produces something based on the whole vector. The command sum(x) is equiv-
alent to:
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x[1] + x[2] + ... + x[length(x)]

The prod function is similar to sum, but does products rather than sums. Prod-
ucts can often overflow or underflow (a suburb of Circle 1)—taking logs and
doing sums is generally a more stable computation.

You often get vectorization for free. Take the example of quadratic.formula
in Circle 1. Since the arithmetic operators are vectorized, the result of this func-
tion is a vector if any or all of the inputs are. The only slight problem is that
there are two answers per input, so the call to cbind is used to keep track of
the pairs of answers.

In binary operations such as:

c(1,4) + 1:10

recycling automatically happens along with the vectorization.

Here is some code that combines both this Circle and Circle 2:

ans <- NULL

for(i in 1:507980) {
if(x[i] < 0) ans <- c(ans, y[i])

}

This can be done simply with:

ans <- y[x < 0]

A double for loop is often the result of a function that has been directly trans-
lated from another language. Translations that are essentially verbatim are
unlikely to be the best thing to do. Better is to rethink what is happening with
R in mind. Using direct translations from another language may well leave you
longing for that other language. Making good translations may well leave you
marvelling at R’s strengths. (The catch is that you need to know the strengths
in order to make the good translations.)

If you are translating code into R that has a double for loop, think.

If your function is not vectorized, then you can possibly use the Vectorize

function to make a vectorized version. But this is vectorization from an external
point of view—it is not the same as writing inherently vectorized code. Some
functions take a function as an argument and demand that the function be
vectorized—these include outer and integrate.

There is another form of vectorization:

> max(2, 100, -4, 3, 230, 5)

[1] 230

> range(2, 100, -4, 3, 230, 5, c(4, -456, 9))

[1] -456 230
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Figure 2: The hypocrites by Sandro Botticelli.

This form of vectorization is to treat the collection of arguments as the vector.
This is NOT a form of vectorization you should expect, it is essentially foreign to
R—min, max, range, sum and prod are rare exceptions. In particular, mean does
not adhere to this form of vectorization, and unfortunately does not generate
an error from trying it:

> mean(2, -100, -4, 3, -230, 5)

[1] 2

But you get the correct answer if you add three (particular) keystrokes:

> mean(c(2, -100, -4, 3, -230, 5))

[1] -54

One reason for vectorization is for computational speed. In a vector operation
there is always a loop. If the loop is done in C code, then it will be much faster
than if it is done in R code. In some cases, this can be very important. In
other cases, it isn’t—a loop in R code now is as fast as the same loop in C on
a computer from a few years ago.

Another reason to vectorize is for clarity. The command:

volume <- width * depth * height
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Table 2: Summary of subscripting with 8 [ 8 .
subscript effect

positive numeric vector selects items with those indices
negative numeric vector selects all but those indices

character vector selects items with those names (or dimnames)
logical vector selects the TRUE (and NA) items

missing selects all

clearly expresses the relation between the variables. This same clarity is present
whether there is one item or a million. Transparent code is an important form of
efficiency. Computer time is cheap, human time (and frustration) is expensive.
This fact is enshrined in the maxim of Uwe Ligges.

Uwe′s Maxim Computers are cheap, and thinking hurts.

A fairly common question from new users is: “How do I assign names to a
group of similar objects?” Yes, you can do that, but you probably don’t want
to—better is to vectorize your thinking. Put all of the similar objects into one
list. Subsequent analysis and manipulation is then going to be much smoother.

3.1 Subscripting

Subscripting in R is extremely powerful, and is often a key part of effective
vectorization. Table 2 summarizes subscripting.

The dimensions of arrays and data frames are subscripted independently.

Arrays (including matrices) can be subscripted with a matrix of positive
numbers. The subscripting matrix has as many columns as there are dimensions
in the array—so two columns for a matrix. The result is a vector (not an array)
containing the selected items.

Lists are subscripted just like (other) vectors. However, there are two forms
of subscripting that are particular to lists: 8 $ 8 and 8 [[ 8 . These are almost the
same, the difference is that 8 $ 8 expects a name rather than a character string.

> mylist <- list(aaa=1:5, bbb=letters)

> mylist$aaa

[1] 1 2 3 4 5

> mylist[[’aaa’]]

[1] 1 2 3 4 5

> subv <- ’aaa’; mylist[[subv]]

[1] 1 2 3 4 5

You shouldn’t be too surprised that I just lied to you. Subscripting with 8 [[ 8

can be done on atomic vectors as well as lists. It can be the safer option when
a single item is demanded.
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As an example of how subscripting can be a vectorization tool, consider
the following problem: We have a matrix amat and we want to produce a new
matrix with half as many rows where each row of the new matrix is the product
of two consecutive rows of amat.

It is quite simple to create a loop to do this:

bmat <- matrix(NA, nrow(amat)/2, ncol(amat))

for(i in 1:nrow(bmat)) bmat[i,] <- amat[2*i-1,] * amat[2*i,]

Note that we have avoided Circle 2 by preallocating bmat.
Later iterations do not depend on earlier ones, so there is hope that we can

eliminate the loop. Subscripting is the key to the elimination:

> bmat2 <- amat[seq(1, nrow(amat), by=2),] *

+ amat[seq(2, nrow(amat), by=2),]

> all.equal(bmat, bmat2)

[1] TRUE

3.2 Vectorized if

Here is some code:

if(x < 1) y <- -1 else y <- 1

This looks perfectly logical. And if x has length one, then it does as expected.
However, if x has length greater than one, then a warning is issued (often ignored
by the user), and the result is not what is most likely intended. Code that fulfills
the common expectation is:

y <- ifelse(x < 1, -1, 1)

Another approach—assuming x is never exactly 1—is:

y <- sign(x - 1)

This provides a couple of lessons:

1. The condition in if is one of the few places in R where a vector (of length
greater than 1) is not welcome (the 8 : 8 operator is another).

2. ifelse is what you want in such a situation (though, as in this case, there
are often more direct approaches).

Recall that in Circle 2 we saw:

hit <- NA

for(i in 1:one.zillion) {
if(runif(1) < 0.3) hit[i] <- TRUE

}
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One alternative to make this operation efficient is:

ifelse(runif(one.zillion) < 0.3, TRUE, NA)

If there is a mistake between if and ifelse, it is almost always trying to use
if when ifelse is appropriate. But ingenuity knows no bounds, so it is also
possible to try to use ifelse when if is appropriate. For example:

ifelse(x, character(0), ’’)

The result of ifelse is ALWAYS the length of its first (formal) argument.
Assuming that x is of length 1, the way to get the intended behavior is:

if(x) character(0) else ’’

Some more caution is warranted with ifelse: the result gets not only its length
from the first argument, but also its attributes. If you would like the answer
to have attributes of the other two arguments, you need to do more work. In
Circle 8 we’ll see a particular instance of this with factors.

3.3 Vectorization impossible

Some things are not possible to vectorize. For instance, if the present iteration
depends on results from the previous iteration, then vectorization is usually not
possible. (But some cases are covered by filter, cumsum, etc.)

If you need to use a loop, then make it lean:

• Put as much outside of loops as possible. One example: if the same or a
similar sequence is created in each iteration, then create the sequence first
and reuse it. Creating a sequence is quite fast, but appreciable time can
accumulate if it is done thousands or millions of times.

• Make the number of iterations as small as possible. If you have the choice
of iterating over the elements of a factor or iterating over the levels of the
factor, then iterating over the levels is going to be better (almost surely).

The following bit of code gets the sum of each column of a matrix (assuming
the number of columns is positive):

sumxcol <- numeric(ncol(x))

for(i in 1:ncol(x)) sumxcol[i] <- sum(x[,i])

A more common approach to this would be:

sumxcol <- apply(x, 2, sum)

Since this is a quite common operation, there is a special function for doing this
that does not involve a loop in R code:
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Table 3: The apply family of functions.
function input output comment

apply matrix or array vector or array or list
lapply list or vector list
sapply list or vector vector or matrix or list simplify
tapply data, categories array or list ragged
mapply lists and/or vectors vector or matrix or list multiple
rapply list vector or list recursive
eapply environment list

dendrapply dendogram dendogram
rollapply data similar to input package zoo

sumxcol <- colSums(x)

There are also rowSums, colMeans and rowMeans.
Another approach is:

sumxcol <- rep(1, nrow(x)) %*% x

That is, using matrix multiplication. With a little ingenuity a lot of problems
can be cast into a matrix multiplication form. This is generally quite efficient
relative to alternatives.

4 Over-Vectorizing

We skirted past Plutus, the fierce wolf with a swollen face, down into the fourth
Circle. Here we found the lustful.

It is a good thing to want to vectorize when there is no effective way to do
so. It is a bad thing to attempt it anyway.

A common reflex is to use a function in the apply family. This is not vector-
ization, it is loop-hiding. The apply function has a for loop in its definition.
The lapply function buries the loop, but execution times tend to be roughly
equal to an explicit for loop. (Confusion over this is understandable, as there
is a significant difference in execution speed with at least some versions of S+.)
Table 3 summarizes the uses of the apply family of functions.

Base your decision of using an apply function on Uwe’s Maxim. The issue
is of human time rather than silicon chip time. Human time can be wasted by
taking longer to write the code, and (often much more importantly) by taking
more time to understand subsequently what it does.

A command applying a complicated function is unlikely to pass the test.
Use an explicit for loop when each iteration is a non-trivial task. But a simple
loop can be more clearly and compactly expressed using an apply function.
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Figure 3: The panderers and seducers and the flatterers by Sandro Botticelli.

There is at least one exception to this rule. We will see in Circle 8 that if
the result will be a list and some of the components can be NULL, then a for

loop is trouble (big trouble) and lapply gives the expected answer.

The tapply function applies a function to each bit of a partition of the data.
Alternatives to tapply are by for data frames, and aggregate for time series
and data frames.

Another approach to over-vectorizing is to use too much memory in the pro-
cess. The outer function is a wonderful mechanism to vectorize some problems.
It is also subject to using a lot of memory in the process.

Suppose that we want to find all of the sets of three positive integers that
sum to 6, where the order matters. (This is related to partitions in number
theory.) We can use outer and which:

the.seq <- 1:4

which(outer(outer(the.seq, the.seq, ’+’), the.seq, ’+’) == 6,

arr.ind=TRUE)

This command is nicely vectorized, and a reasonable solution to this particular
problem. However, with larger problems this could easily eat all memory on a
machine.
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Suppose we have a data frame and we want to change the missing values to
zero. Then we can do that in a perfectly vectorized manner:

x[is.na(x)] <- 0

But if x is large, then this may take a lot of memory. If—as is common—the
number of rows is much larger than the number of columns, then a more memory
efficient method is:

for(i in 1:ncol(x)) x[is.na(x[,i]), i] <- 0

Note that “large” is a relative term; it is usefully relative to the amount of
available memory on your machine. Also note that memory efficiency can also
be time efficiency if the inefficient approach causes swapping.

One more comment: if you really want to change NAs to 0, perhaps you
should rethink what you are doing—the new data are fictional.

It is not unusual for there to be a tradeoff between space and time.

Beware the dangers of premature optimization of your code. Your first duty
is to create clear, correct code. Only consider optimizing your code when:

• Your code is debugged and stable.

• Optimization is likely to make a significant impact. Spending an hour or
two to save a millisecond a month is not best practice.

5 Not Writing Functions

We came upon the River Styx, more a swamp really. It took some convinc-
ing, but Phlegyas eventually rowed us across in his boat. Here we found the
treasoners.

5.1 Abstraction

A key reason that R is a good thing is because it is a language. The power of
language is abstraction. The way to make abstractions in R is to write functions.

Suppose we want to repeat the integers 1 through 3 twice. That’s a simple
command:

c(1:3, 1:3)

Now suppose we want these numbers repeated six times, or maybe sixty times.
Writing a function that abstracts this operation begins to make sense. In fact,
that abstraction has already been done for us:

rep(1:3, 6)
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The rep function performs our desired task and a number of similar tasks.
Let’s do a new task. We have two vectors; we want to produce a single vector

consisting of the first vector repeated to the length of the second and then the
second vector repeated to the length of the first. A vector being repeated to a
shorter length means to just use the first part of the vector. This is quite easily
abstracted into a function that uses rep:

repeat.xy <- function(x, y)

{
c(rep(x, length=length(y)), rep(y, length=length(x)))

}

The repeat.xy function can now be used in the same way as if it came with R.

repeat.xy(1:4, 6:16)

The ease of writing a function like this means that it is quite natural to move
gradually from just using R to programming in R.

In addition to abstraction, functions crystallize knowledge. That π is approx-
imately 3.1415926535897932384626433832795028841971693993751058209749445
923078 is knowledge.

The function:

circle.area <- function(r) pi * r ^ 2

is both knowledge and abstraction—it gives you the (approximate) area for
whatever circles you like.

This is not the place for a full discussion on the structure of the R language,
but a comment on a detail of the two functions that we’ve just created is in
order. The statement in the body of repeat.xy is surrounded by curly braces
while the statement in the body of circle.area is not. The body of a function
needs to be a single expression. Curly braces turn a number of expressions into
a single (combined) expression. When there is only a single command in the
body of a function, then the curly braces are optional. Curly braces are also
useful with loops, switch and if.

Ideally each function performs a clearly specified task with easily understood
inputs and return value. Very common novice behavior is to write one function
that does everything. Almost always a better approach is to write a number of
smaller functions, and then a function that does everything by using the smaller
functions. Breaking the task into steps often has the benefit of making it more
clear what really should be done. It is also much easier to debug when things
go wrong.1 The small functions are much more likely to be of general use.

A nice piece of abstraction in R functions is default values for arguments.
For example, the na.rm argument to sd has a default value of FALSE. If that

1Notice “when” not “if”.
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Table 4: Simple objects.
object type examples

logical atomic TRUE FALSE NA

numeric atomic 0 2.2 pi NA Inf -Inf NaN

complex atomic 3.2+4.5i NA Inf NaN

character atomic ’hello world’ ’’ NA

list recursive list(1:3, b=’hello’, C=list(3, c(TRUE, NA)))

NULL NULL

function function(x, y) x + 2 * y

formula y ~ x

is okay in a particular instance, then you don’t have to specify na.rm in your
call. If you want to remove missing values, then you should include na.rm=TRUE
as an argument in your call. If you create your own copy of a function just to
change the default value of an argument, then you’re probably not appreciating
the abstraction that the function gives you.

Functions return a value. The return value of a function is almost always
the reason for the function’s existence.

The other thing that a function can do is to have one or more side effects.
A side effect is some change to the system other than returning a value. The
philosophy of R is to concentrate side effects into a few functions (such as print,
plot and rm) where it is clear that a side effect is to be expected.

The things that R functions talk about are objects. R is rich in objects.
Table 4 shows some important types of objects.

You’ll notice that each of the atomic types have a possible value NA, as in
“Not Available” and called “missing value”. When some people first get to R,
they spend a lot of time trying to get rid of NAs. People probably did the same
sort of thing when zero was first invented. NA is a wonderful thing to have
available to you. It is seldom pleasant when your data have missing values, but
life is much better with NA than without.

R was designed with the idea that nothing is important. Let’s try that again:
“nothing” is important. Vectors can have length zero. This is another stupid
thing that turns out to be incredibly useful—that is, not so stupid after all.
We’re not so used to dealing with things that aren’t there, so sometimes there
are problems—we’ll see examples in Circle 8.

A lot of the wealth of objects has to do with attributes. Many attributes
change how the object is thought about (both by R and by the user). An
attribute that is common to most objects is names. The attribute that drives
object orientation is class. Table 5 lists a few of the most important types
of objects that depend on attributes. Formulas, that were listed in the simple
table, have class "formula" and so might more properly be in the not-so-simple
list.
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Table 5: Some not so simple objects.
object primary attributes comment

data frame list class row.names a generalized matrix
matrix vector dim dimnames special case of array
array vector dim dimnames usually atomic, not always
factor integer levels class tricky little devils

The word “vector” has a number of meanings in R:

1. an atomic object (as opposed to a list). This is perhaps the most common
usage.

2. an object with no attributes (except possibly names). This is the definition
implied by is.vector and as.vector.

3. an object that can have an arbitrary length (includes lists).

Clearly definitions 1 and 3 are contradictory, but which meaning is implied
should be clear from the context. When the discussion is of vectors as opposed
to matrices, it is definition 2 that is implied.

The word “list” has a technical meaning in R—this is an object of arbitrary
length that can have components of different types, including lists. Sometimes
the word is used in a non-technical sense, as in “search list” or “argument list”.

Not all functions are created equal. They can be conveniently put into three
types.

There are anonymous functions as in:

apply(x, 2, function(z) mean(z[z > 0]))

The function given as the third argument to apply is so transient that we don’t
even give it a name.

There are functions that are useful only for one particular project. These
are your one-off functions.

Finally there are functions that are persistently valuable. Some of these
could well be one-off functions that you have rewritten to be more abstract.
You will most likely want a file or package containing your persistently useful
functions.

In the example of an anonymous function we saw that a function can be an
argument to another function. In R, functions are objects just as vectors or
matrices are objects. You are allowed to think of functions as data.

A whole new level of abstraction is a function that returns a function. The
empirical cumulative distribution function is an example:

> mycumfun <- ecdf(rnorm(10))

> mycumfun(0)

[1] 0.4
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Once you write a function that returns a function, you will be forever immune
to this Circle.

In Circle 2 we briefly met do.call. Some people are quite confused by
do.call. That is both unnecessary and unfortunate—it is actually quite simple
and is very powerful. Normally a function is called by following the name of the
function with an argument list:

sample(x=10, size=5)

The do.call function allows you to provide the arguments as an actual list:

do.call("sample", list(x=10, size=5))

Simple.

At times it is useful to have an image of what happens when you call a
function. An environment is created by the function call, and an environment
is created for each function that is called by that function. So there is a stack
of environments that grows and shrinks as the computation proceeds.

Let’s define some functions:

ftop <- function(x)

{
# time 1

x1 <- f1(x)

# time 5

ans.top <- f2(x1)

# time 9

ans.top

}
f1 <- function(x)

{
# time 2

ans1 <- f1.1(x)

# time 4

ans1

}
f2 <- function(x)

{
# time 6

ans2 <- f2.1(x)

# time 8

ans2

}

And now let’s do a call:
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Figure 4: Stack of environments through time.
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# time 0

ftop(myx)

# time 10

Figure 4 shows how the stack of environments for this call changes through time.
Note that there is an x in the environments for ftop, f1 and f2. The x in ftop

is what we call myx (or possibly a copy of it) as is the x in f1. But the x in f2

is something different.
When we discuss debugging, we’ll be looking at this stack at a specific point

in time. For instance, if an error occurred in f2.1, then we would be looking at
the state of the stack somewhere near time 7.

R is a language rich in objects. That is a part of its strength. Some of
those objects are elements of the language itself—calls, expressions and so on.
This allows a very powerful form of abstraction. While messing with language
elements seems extraordinarily esoteric to almost all new users, a lot of people
moderate that view.

5.2 Simplicity

Make your functions as simple as possible. Simple has many advantages:

• Simple functions are likely to be human efficient: they will be easy to
understand and to modify.

• Simple functions are likely to be computer efficient.
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• Simple functions are less likely to be buggy, and bugs will be easier to fix.

• (Perhaps ironically) simple functions may be more general—thinking about
the heart of the matter often broadens the application.

If your solution seems overly complex for the task, it probably is. There may
be simple problems for which R does not have a simple solution, but they are
rare.

Here are a few possibilities for simplifying:

• Don’t use a list when an atomic vector will do.

• Don’t use a data frame when a matrix will do.

• Don’t try to use an atomic vector when a list is needed.

• Don’t try to use a matrix when a data frame is needed.

Properly formatting your functions when you write them should be standard
practice. Here “proper” includes indenting based on the logical structure, and
putting spaces between operators. We will see in Circle 8 that there is a partic-
ularly good reason to put spaces around logical operators.

A semicolon can be used to mark the separation of two R commands that
are placed on the same line. Some people like to put semicolons at the end of
all lines. This highly annoys many seasoned R users. Such a reaction seems to
be more visceral than logical, but there is some logic to it:

• The superfluous semicolons create some (imperceptible) inefficiency.

• The superfluous semicolons give the false impression that they are doing
something.

One reason to seek simplicity is speed. The Rprof function is a very convenient
means of exploring which functions are using the most time in your function
calls. (The name Rprof refers to time profiling.)

5.3 Consistency

Consistency is good. Consistency reduces the work that your users need to
expend. Consistency reduces bugs.

One form of consistency is the order and names of function arguments. Sur-
prising your users is not a good idea—even if the universe of your users is of
size 1.

A rather nice piece of consistency is always giving the correct answer. In
order for that to happen the inputs need to be suitable. To insure that, the
function needs to check inputs, and possibly intermediate results. The tools for
this job include if, stop and stopifnot.
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Sometimes an occurrence is suspicious but not necessarily wrong. In this
case a warning is appropriate. A warning produces a message but does not
interrupt the computation.

There is a problem with warnings. No one reads them. People have to read
error messages because no food pellet falls into the tray after they push the
button. With a warning the machine merely beeps at them but they still get
their food pellet. Never mind that it might be poison.

The appropriate reaction to a warning message is:

1. Figure out what the warning is saying.

2. Figure out why the warning is triggered.

3. Figure out the effect on the results of the computation (via deduction or
experimentation).

4. Given the result of step 3, decide whether or not the results will be erro-
neous.

You want there to be a minimal amount of warning messages in order to increase
the probability that the messages that are there will be read. If you have a
complex function where a large number of suspicious situations is possible, you
might consider providing the ability to turn off some warning messages. Without
such a system the user may be expecting a number of warning messages and
hence miss messages that are unexpected and important.

The suppressWarnings function allows you to suppress warnings from spe-
cific commands:

> log(c(3, -1))

[1] 1.098612 NaN

Warning message:

In log(c(3, -1)) : NaNs produced

> suppressWarnings(log(c(3, -1)))

[1] 1.098612 NaN

We want our functions to be correct. Not all functions are correct. The results
from specific calls can be put into 4 categories:

1. Correct.

2. An error occurs that is clearly identified.

3. An obscure error occurs.

4. An incorrect value is returned.
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We like category 1. Category 2 is the right behavior if the inputs do not make
sense, but not if the inputs are sensible. Category 3 is an unpleasant place for
your users, and possibly for you if the users have access to you. Category 4 is
by far the worst place to be—the user has no reason to believe that anything is
wrong. Steer clear of category 4.

You should consistently write a help file for each of your persistent functions.
If you have a hard time explaining the inputs and/or outputs of the function,
then you should change the function. Writing a good help file is an excellent
way of debugging the function. The prompt function will produce a template
for your help file.

An example is worth a thousand words, so include examples in your help
files. Good examples are gold, but any example is much better than none. Using
data from the datasets package allows your users to run the examples easily.

6 Doing Global Assignments

Heretics imprisoned in flaming tombs inhabit Circle 6.

A global assignment can be performed with 8 <<- 8 :

> x <- 1

> y <- 2

> fun

function () {
x <- 101

y <<- 102

}
> fun()

> x

[1] 1

> y

[1] 102

This is life beside a volcano.
If you think you need 8 <<- 8 , think again. If on reflection you still think you

need 8 <<- 8 , think again. Only when your boss turns red with anger over you
not doing anything should you temporarily give in to the temptation. There
have been proposals (no more than half-joking) to eliminate 8 <<- 8 from the
language. That would not eliminate global assignments, merely force you to use
the assign function to achieve them.

What’s so wrong about global assignments? Surprise.
Surprise in movies and novels is good. Surprise in computer code is bad.

Except for a few functions that clearly have side effects, it is expected in
R that a function has no side effects. A function that makes a global assign-
ment violates this expectation. To users unfamiliar with the code (and even to
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Figure 5: The sowers of discord by Sandro Botticelli.

the writer of the code after a few weeks) there will be an object that changes
seemingly by magic.

A particular case where global assignment is useful (and not so egregious)
is in memoization. This is when the results of computations are stored so that
if the same computation is desired later, the value can merely be looked up
rather than recomputed. The global variable is not so worrisome in this case
because it is not of direct interest to the user. There remains the problem of
name collisions—if you use the same variable name to remember values for two
different functions, disaster follows.

In R we can perform memoization by using a locally global variable. In this
example of computing Fibonacci numbers, we are using the 8 <<- 8 operator but
using it safely:

fibonacci <- local({
memo <- c(1, 1, rep(NA, 100))

f <- function(x) {
if(x == 0) return(0)

if(x < 0) return(NA)

if(x > length(memo))

stop("’x’ too big for implementation")

if(!is.na(memo[x])) return(memo[x])
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ans <- f(x-2) + f(x-1)

memo[x] <<- ans

ans

}
})

So what is this mumbo jumbo saying? We have a function that is just imple-
menting memoization in the naive way using the 8 <<- 8 operator. But we are
hiding the memo object in the environment local to the function. And why is
fibonacci a function? The return value of something in curly braces is what-
ever is last. When defining a function we don’t generally name the object we
are returning, but in this case we need to name the function because it is used
recursively.

Now let’s use it:

> fibonacci(4)

[1] 3

> head(get(’memo’, envir=environment(fibonacci)))

[1] 1 1 2 3 NA NA

From computing the Fibonacci number for 4, the third and fourth elements of
memo have been filled in. These values will not need to be computed again, a
mere lookup suffices.

R always passes by value. It never passes by reference.
There are two types of people: those who understand the preceding para-

graph and those who don’t.
If you don’t understand it, then R is right for you—it means that R is a

safe place (notwithstanding the load of things in this document suggesting the
contrary). Translated into humanspeak it essentially says that it is dreadfully
hard to corrupt data in R. But ingenuity knows no bounds ...

If you do understand the paragraph in question, then you’ve probably al-
ready caught on that the issue is that R is heavily influenced by functional
programming—side effects are minimized. You may also worry that this implies
hideous memory inefficiency. Well, of course, the paragraph in question is a lie.
If it were literally true, then objects (which may be very large) would always
be copied when they are arguments to functions. In fact, R attempts to only
copy objects when it is necessary, such as when the object is changed inside the
function. The paragraph is conceptually true, but not literally true.

7 Tripping Over Object Orientation

We came upon a sinner in the seventh Circle. He said, “Below my head is the
place of those who took to simony before me—they are stuffed into the fissures
of the stone.” Indeed, with flames held to the soles of their feet.
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It turns out that versions of S (of which R is a dialect) are color-coded by
the cover of books written about them. The books are: the brown book, the
blue book, the white book and the green book.

7.1 S3 methods

S3 methods correspond to the white book.
The concept in R of attributes of an object allows an exceptionally rich

set of data objects. S3 methods make the class attribute the driver of an
object-oriented system. It is an optional system. Only if an object has a class

attribute do S3 methods really come into effect.
There are some functions that are generic. Examples include print, plot,

summary. These functions look at the class attribute of their first argument. If
that argument does have a class attribute, then the generic function looks for a
method of the generic function that matches the class of the argument. If such a
match exists, then the method function is used. If there is no matching method
or if the argument does not have a class, then the default method is used.

Let’s get specific. The lm (linear model) function returns an object of class
"lm". Among the methods for print are print.lm and print.default. The
result of a call to lm is printed with print.lm. The result of 1:10 is printed
with print.default.

S3 methods are simple and powerful. Objects are printed and plotted and
summarized appropriately, with no effort from the user. The user only needs to
know print, plot and summary.

There is a cost to the free lunch. That print is generic means that what
you see is not what you get (sometimes). In the printing of an object you may
see a number that you want—an R-squared for example—but don’t know how
to grab that number. If your mystery number is in obj, then there are a few
ways to look for it:

print.default(obj)

print(unclass(obj))

str(obj)

The first two print the object as if it had no class, the last prints an outline of
the structure of the object. You can also do:

names(obj)

to see what components the object has—this can give you an overview of the
object.

Once upon a time a new user was appropriately inquisitive and wanted to
know how the median function worked. So, logically, the new user types the
function name to see it:
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> median

function (x, na.rm = FALSE)

UseMethod("median")

<environment: namespace:stats>

The new user then asks, “How can I find the code for median?”
The answer is, “You have found the code for median.” median is a generic

function as evidenced by the appearance of UseMethod. What the new user
meant to ask was, “How can I find the default method for median?”

The most sure-fire way of getting the method is to use getS3method:

getS3method(’median’, ’default’)

The methods function lists the methods of a generic function. Alternatively
given a class it returns the generic functions that have methods for the class.
This statement needs a bit of qualification:

• It is listing what is currently attached in the session.

• It is looking at names—it will list objects in the format of generic.class.
It is reasonably smart, but it can be fooled into listing an object that is
not really a method.

A list of all methods for median (in the current session) is found with:

methods(median)

and methods for the "factor" class are found with:

methods(class=’factor’)

Classes can inherit from other classes. For example:

> class(ordered(c(90, 90, 100, 110, 110)))

[1] "ordered" "factor"

Class "ordered" inherits from class "factor". Ordered factors are factors, but
not all factors are ordered. If there is a method for "ordered" for a specific
generic, then that method will be used when the argument is of class "ordered".
However, if there is not a method for "ordered" but there is one for "factor",
then the method for "factor" will be used.

Inheritance should be based on similarity of the structure of the objects,
not similarity of the concepts for the objects. Matrices and data frames have
similar concepts. Matrices are a specialization of data frames (all columns of the
same type), so conceptually inheritance makes sense. However, matrices and
data frames have completely different implementations, so inheritance makes
no practical sense. The power of inheritance is the ability to (essentially) reuse
code.

29



Figure 6: The Simoniacs by Sandro Botticelli.

7.2 S4 methods

S4 methods correspond to the green book.
S3 methods are simple and powerful, and a bit ad hoc. S4 methods remove

the ad hoc—they are more strict and more general. The S4 methods technology
is a stiffer rope—when you hang yourself with it, it surely will not break. But
that is basically the point of it—the programmer is restricted in order to make
the results more dependable for the user. That’s the plan anyway, and it often
works.

One feature of S4 methods that is missing from S3 methods (and many other
object-oriented systems) is multiple dispatch. Suppose you have an object of
class "foo" and an object of class "bar" and want to perform function fun on
these objects. The result of

fun(foo, bar)

may or may not to be different from

fun(bar, foo)

If there is a lot of classes or a lot of arguments to the function that are sensitive
to class, there can be big complications. S4 methods make this complicated
situation relatively simple.
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We saw that UseMethod creates an S3 generic function. S4 generic functions
are created with standardGeneric.

S4 is quite strict about what an object of a specific class looks like. In
contrast S3 methods allow you to merely add a class attribute to any object—
as long as a method doesn’t run into anything untoward, there is no penalty. A
key advantage in strictly regulating the structure of objects in a particular class
is that those objects can be used in C code (via the .Call function) without a
copious amount of checking.

Along with the strictures on S4 objects comes some new vocabulary. The
pieces (components) of the object are called slots. Slots are accessed by the 8 @ 8

operator. So if you see code like:

x@Data

that is an indication that x is an S4 object.
By now you will have noticed that S4 methods are driven by the class

attribute just as S3 methods are. This commonality perhaps makes the two
systems appear more similar than they are. In S3 the decision of what method
to use is made in real-time when the function is called. In S4 the decision is
made when the code is loaded into the R session—there is a table that charts
the relationships of all the classes. The showMethods function is useful to see
the layout.

S4 has inheritance, as does S3. But, again, there are subtle differences. For
example, a concept in S4 that doesn’t resonate in S3 is contains. If S4 class "B"
has all of the slots that are in class "A", then class "B" contains class "A".

Will S4 ever totally supplant S3? Highly unlikely. One reason is backward
compatibility—there is a whole lot of code that depends on S3 methods. Addi-
tionally, S3 methods are convenient. It is very easy to create a plot or summary
method for a specific computation (a simulation, perhaps) that expedites anal-
ysis.

If you are planning on writing S4 (or even S3) methods, then you can defi-
nitely do worse than getting the book Software for Data Analysis: Programming

with R by John Chambers. Don’t misunderstand: this book can be useful even
if you are not using methods.

Two styles of object orientation are hardly enough. Luckily, there are the
OOP, R.oo and proto packages that provide three more.

7.3 Namespaces

Namespaces don’t really have much to do with object-orientation. To the casual
user they are related in that both seem like an unwarranted complication. They
are also related in the sense that that seeming complexity is actually simplicity
in disguise.

Suppose that two packages have a function called recode. You want to use
a particular one of these two. There is no guarantee that the one you want will
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always be first on the search list. That is the problem for which namespaces are
the answer.

To understand namespaces, let’s consider an analogy of a function that re-
turns a named list. There are some things in the environment of the function
that you get to see (the components that it returns), and possibly some objects
that you can’t see (the objects created in the function but not returned). A
namespace exports one or more objects so that they are visible, but may have
some objects that are private.

The way to specify an object from a particular namespace is to use the 8 :: 8

operator:

> stats::coef

function (object, ...)

UseMethod("coef")

<environment: namespace:stats>

This operator fails if the name is not exported:

> stats::coef.default

Error: ’coef.default’ is not an exported object

from ’namespace:stats’

There are ways to get the non-exported objects, but you have to promise not to
use them except to inspect the objects. You can use 8 ::: 8 or the getAnywhere

function:

> stats:::coef.default

function (object, ...)

object$coefficients

<environment: namespace:stats>

> getAnywhere(’coef.default’)

A single object matching ’coef.default’ was found

It was found in the following places

registered S3 method for coef from namespace stats

namespace:stats

with value

function (object, ...)

object$coefficients

<environment: namespace:stats>

There can be problems if you want to modify a function that is in a namespace.
Functions assignInNamespace and unlockBinding can be useful in this regard.

At least as of this writing, replacement functions don’t behave as we might
expect when combined with the 8 :: 8 operator:

> w <- 1:4

> base::length(w) <- 7
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Error in base::length(w) <- 7 :

invalid function in complex assignment

> w <- base:: 8 length<- 8 (w, 7)

> w

[1] 1 2 3 4 NA NA NA

8 Believing It Does What is Intended

In this Circle we came across the fraudulent—each trapped in their own flame.

This Circle is wider and deeper than one might hope. Reasons for this
include:

• Backwards compatibility. There is roughly a two-decade history of com-
patibility to worry about. If you are a new user, you will think that rough
spots should be smoothed out no matter what. You will think differ-
ently if a new version of R breaks your code that has been working. The
larger splinters have been sanded down, but this still leaves a number of
annoyances to adjust to.

• R is used both interactively and programmatically. There is tension there.
A few functions make special arrangements to make interactive use easier.
These functions tend to cause trouble if used inside a function. They can
also promote false expectations.

• The main reason that there is a lot of trouble spots in R is that R does a
lot.

In this Circle we will meet a large number of ghosts, chimeras and devils. These
can often be exorcised using the browser function. Put the command:

browser()

at strategic locations in your functions in order to see the state of play at those
points. A close alternative is:

recover()

browser allows you to look at the objects in the function in which the browser

call is placed. recover allows you to look at those objects as well as the objects
in the caller of that function and all other active functions.

Liberal use of browser, recover, cat and print while you are writing func-
tions allows your expectations and R’s expectations to converge.

A very handy way of doing this is with trace. For example, if browsing at
the end of the myFun function is convenient, then you can do:

trace(myFun, exit=quote(browser()))
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You can customize the tracing with a command like:

trace(myFun, edit=TRUE)

If you run into an error, then debugging is the appropriate action. There are at
least two approaches to debugging. The first approach is to look at the state of
play at the point where the error occurs. Prepare for this by setting the error

option. The two most likely choices are:

options(error=recover)

or

options(error=dump.frames)

The difference is that with recover you are automatically thrown into debug
mode, but with dump.frames you start debugging by executing:

debugger()

In either case you are presented with a selection of the frames (environments)
of active functions to inspect.

You can force R to treat warnings as errors with the command:

options(warn=2)

If you want to set the error option in your .First function, then you need a
trick since not everything is in place at the time that .First is executed:

options(error=expression(recover()))

or

options(error=expression(dump.frames()))

The second idea for debugging is to step through a function as it executes. If
you want to step through function myfun, then do:

debug(myfun)

and then execute a statement involving myfun. When you are done debugging,
do:

undebug(myfun)

A more sophisticated version of this sort of debugging may be found in the
debug package.
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8.1 Ghosts

differences with S+

There are a number of differences between R and S+. The differences are
explained in the R FAQ (http://cran.r-project.org/faqs.html). A few, but not
all, are also mentioned here.

package functionality

Suppose you have seen a command that you want to try, such as

fortune(’dog’)

You try it and get the error message:

Error: could not find function "fortune"

You, of course, think that your installation of R is broken. I don’t have evidence
that your installation is not broken, but more likely it is because your current
R session does not include the package where the fortune function lives. You
can try:

library(fortune)

Whereupon you get the message:

Error in library(fortune) :

there is no package called ’fortune’

The problem is that you need to install the package onto your computer. As-
suming you are connected to the internet, you can do this with the command:

install.packages(’fortune’)

After a bit of a preamble, you will get:

Warning message:

package ’fortune’ is not available

Now the problem is that we have the wrong name for the package. Capitalization
as well as spelling is important. The successful incantation is:

install.packages(’fortunes’)

library(fortunes)

fortune(’dog’)

Installing the package only needs to be done once, attaching the package with
the library function needs to be done in every R session where you want the
functionality.

The command:

library()

shows you a list of packages that are in your standard location for packages.
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Figure 7: The falsifiers: alchemists by Sandro Botticelli.

precedence

It is a sin to assume that code does what is intended. The following command
clearly intends to produce a sequence from one to one less than n:

1:n-1

From the presence of the example here, you should infer that is not what you
get.

Here is another way to make a similar mistake:

10^2:6

If you do:

-2.3 ^ 4.5

you will get a nice, pleasing number. If you do:

x <- -2.3

x ^ 4.5

you will get not-a-number, written as NaN. While you may think the two com-
mands are the same, they are not—operator precedence has struck again. If the
latter operation is really what you want, then you need to do:
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as.complex(x) ^ 4.5

Pay attention to the precedence of operators. If you are at all unsure, then
parentheses can force the command to do what you want.

equality of missing values

The following can not possibly work to test for missing values in x:

x == NA

Why not?

Here’s a hint:

3 == c(3, 1, 3, NA)

Instead, do:

is.na(x)

testing NULL

Likewise there is is.null for testing if an object is NULL.

> xnull <- NULL

> xnull == NULL

logical(0)

> xnotnull <- 42

> xnotnull == NULL

logical(0)

> is.null(xnull)

[1] TRUE

However, it is often better to test if the length of the object is zero—NULL is not
the only zero length object.

> is.null(numeric(0))

[1] FALSE
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membership

Another common wish for the 8 == 8 operator is to indicate which elements of
a vector are in some other vector. If you are lucky it will work, but generally
does not. (Actually you will be unlucky if you are writing a function and it does
work—you’ll miss the bug you just put in your function.)

> x1 <- 10:1

> x1 == c(4, 6)

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

[9] FALSE FALSE

The command above fails to give the locations in x1 that are equal to 4 and 6.
Use 8 %in% 8 for situations like this:

> x1 %in% c(4, 6)

[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

[9] FALSE FALSE

multiple tests

If you want to do multiple tests, you don’t get to abbreviate. With the x1 from
just above:

> x1 == 4 | 6

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[10] TRUE

> x1 == (4 | 6)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[9] FALSE TRUE

In a second we’ll discuss what is really happening in these two statements. It
would be a good exercise for you to try to figure it out on your own.

But first, the way to actually do the intended operation is:

> x1 == 4 | x1 == 6

[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

[9] FALSE FALSE

or (better for the more general case):

> x1 %in% c(4, 6)

[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

[9] FALSE FALSE

Now, what are our bogus attempts doing?
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x1 == 4 | 6

is evaluated as

(x1 == 4) | 6

(otherwise the two statements would get the same answer). This last statement
is the same as:

6 | (x1 == 4)

since “or” is commutative. The 8 | 8 operator coerces its arguments to be logical.
Any non-zero number coerces to TRUE, and so all elements of the resulting
command will be TRUE since 6 is coerced to TRUE.

The other statement has a different result but follows a somewhat similar
cascade of coercions.

4 | 6

is the same as

TRUE | TRUE

which is TRUE. So then R is being asked:

x1 == TRUE

The 8 == 8 operator coerces not to logical, but to the most general type, numeric
in this case. TRUE coerced to numeric is 1.

coercion

Automatic coercion is a good thing. However, it can create surprises. There is
an ordering of the modes for coercion—most specific to least specific—as shown
below.

> modes <- c(’logical’, ’numeric’, ’complex’, ’character’)

> modarr <- array(vector(’list’,16), c(4,4), list(modes,modes))

> for(i in 1:4) for(j in 1:4) {
+ modarr[[i, j]] <- c(vector(modes[i], 0),

+ vector(modes[j], 0))

+ }
> modarr

logical numeric complex character

logical Logical,0 Numeric,0 Complex,0 Character,0

numeric Numeric,0 Numeric,0 Complex,0 Character,0

complex Complex,0 Complex,0 Complex,0 Character,0

character Character,0 Character,0 Character,0 Character,0
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This example leaves out the integer subtype of numeric. Integers go between
logical and (general) numeric. You are highly unlikely to need to care (or even
know) if an object is stored as integer or the more general numeric.

Comment: This example uses a matrix that is a list. Notice the use of 8 [[ 8

for the matrix. Some people arrive at such a matrix by accident—an event that
may lead to confusion.

comparison under coercion

Be careful when doing comparisons where coercion might come into play:

> 50 < ’7’

[1] TRUE

excluding named items

Negative subscripts allow you to say which items you don’t want:

> xlet <- 1:6

> names(xlet) <- letters[1:6]

> xlet[-c(3,4)]

a b e f

1 2 5 6

Sometimes you would like to do the excluding with names rather than numbers,
but this does not work (naturally enough):

> xlet[-c(’c’, ’d’)]

Error in -c("c", "d") : Invalid argument to unary operator

There is a reasonable way to get the behavior though:

> xlet[!(names(xlet) %in% c(’c’, ’d’))]

a b e f

1 2 5 6

Actually parentheses are not needed:

> xlet[!names(xlet) %in% c(’c’, ’d’)]

a b e f

1 2 5 6

But it seems like magic to me that this works—I feel more comfortable with the
parentheses. Uwe’s Maxim comes into this for me: I need to think less when
the parentheses are there.

The negative of a character string does work in some circumstances in
subset, but note that there are warnings coming up about using subset.
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excluding missing values

> xna <- c(1, NA, 3, 2, 4, 2)

> xna[xna == 2]

[1] NA 2 2

As you can see, if you only wanted the values that are for sure 2, then you would
be disappointed. If that is what you want, then you need to say so:

> xna[!is.na(xna) & xna == 2]

[1] 2 2

Or more compactly:

> xna[which(xna == 2)]

[1] 2 2

negative nothing is something

> x2 <- 1:4

> x2[-which(x2 == 3)]

[1] 1 2 4

The command above returns all of the values in x2 not equal to 3.

> x2[-which(x2 == 5)]

numeric(0)

The hope is that the above command returns all of x2 since no elements are
equal to 5. Reality will dash that hope. Instead it returns a vector of length
zero.

There is a subtle difference between the two following statements:

x[]

x[numeric(0)]

Subtle difference in the input, but no subtlety in the difference in the output.

There are at least three possible solutions for the original problem.

out <- which(x2 == 5)

if(length(out)) x2[-out] else x2

Another solution is to use logical subscripts:

x2[!(x2 %in% 5)]

Or you can, in a sense, work backwards:

x2[ setdiff(seq along(x2), which(x2 == 5)) ]

41



but zero can be nothing

> x3 <- 1:3

> x3[c(0, 4)] <- c(-1, 9)

Warning message: number of items to replace is not

a multiple of replacement length

> x3

[1] 1 2 3 -1

This is an instance where you don’t want to ignore the warning message because
the fourth element does not get its intended value.

something plus nothing is nothing

> 1 + NULL

numeric(0)

This computation goes through without error or warning. It works because the
recycling rule says that the length of the result should be 0. Sometimes you
would prefer to be warned.

sum of nothing is zero

Some people are surprised by:

> sum(numeric(0))

[1] 0

And perhaps even more by:

> prod(numeric(0))

[1] 1

The counterparts in logicland are:

> any(logical(0))

[1] FALSE

> all(logical(0))

[1] TRUE

Surprising or not, these are the correct answers. We demand that

sum(c(1, 3, 5, 7))

equals

sum(c(1, 3)) + sum(c(5, 7))

So we should also demand that it equals:

sum(c(1, 3, 5, 7)) + sum(numeric(0))
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first match only

match only matches the first occurrence:

> match(1:2, rep(1:4, 2))

[1] 1 2

If that is not what you want, then change what you do:

> which(rep(1:4, 2) %in% 1:2)

[1] 1 2 5 6

first match only (reprise)

If names are not unique, then subscripting with characters will only give you
the first match:

> x4 <- c(a=1, b=2, a=3)

> x4["a"]

a

1

If this is not the behavior you want, then you probably want to use 8 %in% 8 :

> x4[names(x4) %in% ’a’]

a a

1 3

partial matching can partially confuse

Partial matching happens in function calls and some subscripting.
The two following calls are the same:

> mean(c(1:10, 1000), trim=.25)

[1] 6

> mean(c(1:10, 1000), t=.25)

[1] 6

The trim argument is the only argument to mean.default which starts with
“t” so R knows that you meant “trim” when you only said “t”. This is helpful,
but some people wonder if it is too helpful by a half.

> l1 <- list(aa=1:3, ab=2:4, b=3:5, bb=4:6, cc=5:7)

> l1$c

[1] 5 6 7

> l1[[’c’]]
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NULL

> l1[[’c’, exact=FALSE]]

[1] 5 6 7

> l1$a

NULL

> myfun1 <- function(x, trim=0, treat=1) {
+ treat * mean(x, trim=trim)

+ }
> myfun1(1:4, tr=.5)

Error in myfun1(1:4, tr = .05) :

argument 2 matches multiple formal arguments

The 8 $ 8 operator always allows partial matching. The 8 [[ 8 operator, which
is basically synonymous with 8 $ 8 on lists, does not allow partial matching by
default (in recent versions of R). An ambiguous match results in NULL for lists,
but results in an error in function calls. The myfun1 example shows why an
error is warranted. For the full details on subscripting, see:

?Extract

Here are the rules for argument matching in function calls, but first some vocab-
ulary: A formal argument is one of the argument names in the definition of the
function. The mean.default function has 4 formal arguments (x, trim, na.rm
and 8 ... 8 ). A tag is the string used in a call to indicate which formal argument
is meant. We used “t” as a tag in a call to mean (and hence to mean.default).
There is a partial match if all the characters of the tag match the start of the
formal argument.

• If a tag matches a formal argument exactly, then the two are bound.

• Unmatched tags are partially matched to unmatched formal arguments.

• An error occurs if any tag partially matches more than one formal argu-
ment not already bound.

• (Positional matching) Unmatched formal arguments are bound to un-
named (no tag) arguments in the call, based on the order in the call
and of the formal arguments.

• If 8 ... 8 is among the formal arguments, any formal arguments after
8 ... 8 are only matched exactly.

• If 8 ... 8 is among the formal arguments, any unmatched arguments in
the call, tagged or not, are taken up by the 8 ... 8 formal argument.

• An error occurs if any supplied arguments in the call are unmatched.

The place where partial matching is most likely to bite you is in calls that take a
function as an argument and you pass in additional arguments for the function.
For example:
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apply(xmat, 2, mean, trim=.2)

If the apply function had an argument that matched or partially matched
“trim”, then apply would get the trim value, not mean.

There are two strategies in general use to reduce the possibility of such
collisions:

• The apply family tends to have arguments that are in all capitals, and
hence unlikely to collide with arguments of other functions that tend to
be in lower case.

• Optimization functions tend to put the 8 ... 8 (which is meant to be given
to the function that is an argument) among the first of its arguments. Thus
additional arguments to the optimizer (as opposed to the function being
optimized) need to be given by their full names.

Neither scheme is completely satisfactory—you can still get unexpected colli-
sions in various ways. If you do (and you figure out what is happening), then
you can include all of the arguments in question in your call.

no partial match assignments

One of the most pernicious effects of partial matching in lists is that it can fool
you when making replacements:

> ll2 <- list(aa=1:3, bb=4:6)

> ll2$b

[1] 4 5 6

> ll2$b <- 7:9

> ll2

$aa

[1] 1 2 3

$bb

[1] 4 5 6

$b

[1] 7 8 9

cat versus print

If you print a vector that does not have names, there is an indication of the
index of the first element on each line:

> options(width=20)

> 1:10

[1] 1 2 3 4 5

[6] 6 7 8 9 10
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Alternatively, cat just prints the contents of the vector:

> cat(1:10)

1 2 3 4 5 6 7 8 9 10>

Notice that there is not a newline after the results of cat, you need to add that
yourself:

cat(1:10, ’\n’)

There is a more fundamental difference between print and cat—cat actually
interprets character strings that it gets:

> xc <- ’blah\\blah\tblah\n’
> print(xc)

[1] "blah\\blah\tblah\n"
> cat(xc)

blah\blah blah

>

Strings are two-faced. One face is what the string actually says (this is what
cat gives you). The other face is a representation that allows you to see all of
the characters—how the string is actually built—this is what print gives you.
Do not confuse the two.

Reread this item—it is important. Important in the sense that if you don’t
understand it, you are going to waste a few orders of magnitude more time
fumbling around than it would take to understand.

backslashes

Backslashes are the escape character for R (and for Unix and C).
Since backslash doesn’t mean backslash, there needs to be a way to mean

backslash. Quite logically that way is backslash-backslash:

> cat(’\\’)
\>

Sometimes the text requires a backslash after the text has been interpreted. In
the interpretation each pair of backslashes becomes one backslash. Backslashes
grow in powers of two.

There are two other very common characters involving backslash: \t means
tab and \n means newline. Table 6 shows the characters using backslash that
you are most likely to encounter. You can see the entire list via:

?Quotes

Note that nchar (by default) gives the number of logical characters, not the
number of keystrokes needed to create them:
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Table 6: A few of the most important backslashed characters.
character meaning

\\ backslash
\n newline
\t tab
\" double quote (used when this is the string delimiter)
\’ single quote (used when this is the string delimiter)

> nchar(’\\’)
[1] 1

paths in Windows

Quite unfortunately Windows uses the backslash to separate directories in paths.
Consider the R command:

attach(’C:\tmp\foo’)

This is confusing the two faces of strings. What that string actually contains is:
C, colon, tab, m, p, formfeed, o, o. No backslashes at all. What should really
be said is:

attach(’C:\\tmp\\foo’)

However, in all (or at least virtually all) cases R allows you to use slashes in
place of backslashes in Windows paths—it does the translation under the hood:

attach(’C:/tmp/foo’)

If you try to copy and paste a Windows path into R, you’ll get a string (which is
wrong) along with some number of warnings about unrecognized escapes. One
approach is to paste into a command like:

scan(’’, ’’, n=1)

quotes

There are three types of quote marks, and a cottage industry has developed
in creating R functions that include the string “quote”. Table 7 lists functions
that concern quoting in various ways. The bquote function is generally the
most useful—it is similar to substitute.

Double-quotes and single-quotes—essentially synonymous—are used to de-
limit character strings. If the quote that is delimiting the string is inside the
string, then it needs to be escaped with a backslash.
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Table 7: Functions to do with quotes.
function use

bquote substitute items within .()

noquote print strings without surrounding quotes
quote language object of unevaluated argument
Quote alias for quote
dQuote add double left and right quotes
sQuote add single left and right quotes
shQuote quote for operating system shell

> ’"’

[1] "\""

A backquote (also called “backtick”) is used to delimit a name, often a name
that breaks the usual naming conventions of objects.

> ’3469’

[1] "3469"

> 8 3469 8

Error: Object "3469" not found

> 8 2 8 <- 2.5

> 8 2 8 + 8 2 8

[1] 5

backquotes

Backquotes are used for names of list components that are reserved words and
other “illegal” names. No need to panic.

> ll3 <- list(A=3, NA=4)

Error: unexpected ’=’ in "ll3 <- list(A=3, NA="

> ll3 <- list(A=3, ’NA’=4)

> ll3 <- list(A=3, ’NA’=4, ’for’=5)

> ll3

$A

[1] 3

$ 8 NA 8

[1] 4

$ 8 for 8

[1] 5

> ll3$’for’

[1] 5

Although the component names are printed using backquotes, you can access
the components using either of the usual quotes if you like. The initial attempt
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to create the list fails because the NA was expected to be the data for the second
(nameless) component.

disappearing attributes

Most coercion functions strip the attributes from the object. For example, the
result of:

as.numeric(xmat)

will not be a matrix. A command that does the coercion but keeps the attributes
is:

storage.mode(xmat) <- ’numeric’

disappearing attributes (reprise)

> x5 <- 1

> attr(x5, ’comment’) <- ’this is x5’

> attributes(x5)

$comment

[1] "this is x5"

> attributes(x5[1])

NULL

Subscripting almost always strips almost all attributes.
If you want to keep attributes, then one solution is to create a class for your

object and write a method for that class for the 8 [ 8 function.

when space matters

Spaces, or their lack, seldom make a difference in R commands. Except that
spaces can make it much easier for humans to read (recall Uwe’s Maxim).

There is an instance where space does matter to the R parser. Consider the
statement:

x<-3

This could be interpreted as either

x <- 3

or

x < -3

This should prompt you to use the spacebar on your keyboard. Most important
to make code legible to humans is to put spaces around the 8 <- 8 operator. Un-
fortunately that does not solve the problem in this example—it is in comparisons
that the space is absolutely required.
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multiple comparisons

0 < x < 1

seems like a reasonable way to test if x is between 0 and 1. R doesn’t think so.
The command that R agrees with is:

0 < x & x < 1

name masking

By default T and F are assigned to TRUE and FALSE, respectively. However, they
can be used as object names (but in S+ they can not be). This leads to two
suggestions:

1. It is extremely good practice to use TRUE and FALSE rather than T and F.

2. It is good practice to avoid using T and F as object names in order not to
collide with those that failed to follow suggestion 1.

It is also advisable to avoid using the names of common functions as object
names. Two favorites are c and t.

And don’t call your matrix matrix, see:

fortune(’dog’)

Usually masking objects is merely confusing. However, if you mask a popular
function name with your own function, it can verge on suicidal.

> c <- function(x) x * 100

> par(mfrow=c(2, 2))

Error in c(2, 2) : unused argument(s) (2)

If you get an extraordinarily strange error, it may be due to masking. Evasive
action after the fact includes:

find(’c’)

if you know which function is the problem. To find the problem, you can try:

conflicts(detail=TRUE)

Another possibility for getting out of jail is to start R with --vanilla.
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more sorting than sort

The order function is probably what you are looking for when sort doesn’t do
the sorting that you want. Uses of order include:

• sorting the rows of a matrix or data frame.

• sorting one vector based on values of another.

• breaking ties with additional variables.

sort.list not for lists

Do not be thinking that sort.list is to sort lists. You silly fool.

search list shuffle

attach and load are very similar in purpose, but different in effect. attach

creates a new item in the search list while load puts its contents into the global
environment (the first place in the search list).

Often attach is the better approach to keep groups of objects separate.
However, if you change directory into a location and want to have the existing
.RData, then load is probably what you want.

Here is a scenario (that you don’t want):

• There exists a .RData in directory project1.

• You start R in some other directory and then change directory to project1.

• The global environment is from the initial directory.

• You attach .RData (from project1).

• You do some work, exit and save the workspace.

• You have just wiped out the original .RData in project1, losing the data
that was there.

string not the name

If you have a character string that contains the name of an object and you want
the object, then use get:

funs <- c(’mean’, ’median’)

get(funs[2])(data)

If you found as.name and thought that would solve your problem, you were
right but you need one more step:

eval(as.name(funs[2]))(data)
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get a component

The get function is extremely powerful, but it is not clairvoyant. If you say:

get(’myobj$comp’)

it thinks (quite rightly) you are asking for an object by the name of ’my-
obj$comp’. If you want the comp component of myobj, you have to say:

get(’myobj’)$comp

string not the name (encore)

If you have a character string that contains the name of a component that you
want to extract from a list, then you can not use the 8 $ 8 operator. You need
to use 8 [[ 8 :

> mylist <- list(aaa=1:5, bbb=letters)

> subv <- ’aaa’

> mylist$subv

NULL

> # the next three lines are all the same

> mylist$aaa

[1] 1 2 3 4 5

> mylist[[’aaa’]]

[1] 1 2 3 4 5

> mylist[[subv]]

[1] 1 2 3 4 5

string not the name (yet again)

If you create a character string with paste and you want that to be the name
of an object, you can not use that on the left of an assignment:

> paste(’x’, 1, sep=’’) <- 3:5

Error: Target of assignment expands to non-language object

But assign will do this:

for(i in 1:n) assign(paste(’obj’, i, sep=’.’), mylist[[i]])

WARNING: An operation like this can land you in Circle 3 (failing to vectorize—
this example is anti-vectorizing) and/or the heresy of Circle 6.
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As we have just seen with get, assigning to a name like ’myobj$comp’ is
not going to get you where you want to go—it will create an object with a non-
standard name rather than modifying the comp component of myobj. Create a
copy of the object, change the component in the copy, then assign the name to
the copy.

string not the name (still)

A formula can easily be created out of a character string:

> myvars <- paste(’V’, 1:9, sep=’’)

> myvars

[1] "V1" "V2" "V3" "V4" "V5" "V6" "V7" "V8" "V9"

> as.formula(paste(’y ~ ’, paste(myvars[c(3,5,8)],

+ collapse=’ + ’)))

y ~ V3 + V5 + V8

name not the argument

You may want to produce a plot or other output that states the dataset that
was used. You might try something like:

myfun <- function(x, ...)

{
plot(x, main=x, ...)

}

But that is going to produce a less than pleasing main title. The substitute

function along with deparse is probably what you are looking for.

myfun2 <- function(x, ...)

{
plot(x, main=deparse(substitute(x)), ...)

}

unexpected else

Error: unexpected ’else’ in "else"

If you aren’t expecting ’else’ in ’else’, then where would you expect it?
While you may think that R is ludicrous for giving you such an error message,

R thinks you are even more ludicrous for expecting what you did to work.
R takes input until it gets a complete statement, evaluates that statement,

then takes more input. Here is how to get that error:
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if(any(abs(x) > 1)) atan(x)

else asin(x)

When R gets to the end of the first line, it has a perfectly complete statement
so it evaluates it. Now it finds a statement starting with ’else’—this makes no
sense. Proper formatting is the key. If it is convenient, you can put the whole
statement on one line:

if(any(abs(x) > 1)) atan(x) else asin(x)

Alternatively, use curly braces (and a well-placed ’else’):

if(any(abs(x) > 1)) {
atan(x)

} else {
asin(x)

}

dropping dimensions

> xmat <- array(1:4, c(2,2))

> xmat[1,] # simple vector, not a matrix

[1] 1 3

> xmat[1, , drop=FALSE] # still a matrix

[,1] [,2]

[1,] 1 3

By default dimensions of arrays are dropped when subscripting makes the di-
mension length 1. Subscripting with drop=FALSE overrides the default.

NOTE: Failing to use drop=FALSE inside functions is a major source of bugs.
You only test the function when the subscript has length greater than 1. The
function fails once it hits a situation where the subscript is length 1—somewhere
downstream a matrix is expected and there is a simple vector there instead.

NOTE: Failing to use drop=FALSE inside functions is a major source of bugs.

drop data frames

The drop function has no effect on a data frame. If you want dropping to be
done in a data frame, you need to use the drop argument in subscripting.

Dropping in data frames can be surprising (but it is logical).

> xdf <- data.frame(a=1:2, b=c(’v’, ’w’))

> xdf[1,] # data frame

a b

1 1 v
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> drop(xdf[1,]) # data frame

a b

1 1 v

> xdf[1, , drop=TRUE] # list

$a

[1] 1

$b

[1] v

Levels: v w

> xdf[,1] # numeric vector

[1] 1 2

> xdf[, 1, drop=FALSE] # data frame

a

1 1

2 2

> drop(xdf[, 1, drop=FALSE]) # data frame

a

1 1

2 2

losing row names

The row names of a data frame are lost through dropping:

> xdf2 <- data.frame(a=1:4, b=42:45,

+ row.names=LETTERS[1:4])

> xdf2[, 1]

[1] 1 2 3 4

> as.matrix(xdf2)[, 1]

A B C D

1 2 3 4

Coercing to a matrix first will retain the row names, but possibly at the expense
of not getting the right values if the column types of the data frame are mixed.

> xdf2b <- data.frame(a=1:4, b=letters[21:24],

+ row.names=LETTERS[1:4])

> as.matrix(xdf2b)[,1]

A B C D

"1" "2" "3" "4"

> drop(as.matrix(xdf2b[, 1, drop=FALSE]))

A B C D

1 2 3 4

The final incantation, though a bit complicated, will give you the right thing.
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apply function returning a vector

If you use apply with a function that returns a vector, that becomes the first
dimension of the result. This is likely not what you naively expect if you are
operating on rows:

> matrix(15:1, 3)

[,1] [,2] [,3] [,4] [,5]

[1,] 15 12 9 6 3

[2,] 14 11 8 5 2

[3,] 13 10 7 4 1

> apply(matrix(15:1, 3), 1, sort)

[,1] [,2] [,3]

[1,] 3 2 1

[2,] 6 5 4

[3,] 9 8 7

[4,] 12 11 10

[5,] 15 14 13

The naive expectation is really arrived at with:

t(apply(matrix(15:1, 3), 1, sort))

But note that no transpose is required if you operate on columns—the naive
expectation holds in that case.

empty cells in tapply

If there are combinations of levels that do not appear, then tapply gives NA as
the answer (or NULL if simplify=FALSE):

> tapply(9, factor(1, levels=1:2), sum)

1 2

9 NA

> tapply(9, factor(1, levels=1:2), sum, simplify=FALSE)

$ 8 1 8

[1] 9

$ 8 2 8

NULL

by copies the tapply behavior:

> by(9, factor(1, levels=1:2), sum)

factor(1, levels = 1:2): 1

[1] 9

------------------------------------------------------------

factor(1, levels = 1:2): 2

[1] NA
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aggregate drops the empty cell:

> aggregate(9, list(factor(1, levels=1:2)), sum)

Group.1 x

1 1 9

You can get the “right” answer for the empty cell via split and sapply:

> sapply(split(9, factor(1, levels=1:2)), sum)

1 2

9 0

This behavior depends on the default value of drop=FALSE in split.

arithmetic that mixes matrices and vectors

To do matrix multiplication between a matrix and a vector you do:

xmat %*% yvec

or

yvec %*% xmat

R is smart enough to orient the vector in the way that makes sense. There is
no need to coerce the vector to a matrix.

If you want to multiply each row of a matrix by the corresponding element
of a vector, then do:

xmat * yvec

or

yvec * xmat

This works because of the order in which the elements of the matrix are stored
in the underlying vector.

But what to do if you want to multiply each column by the corresponding
element of a vector? If you do:

xmat * yvec

R does not check that the length of yvec matches the number of columns of
xmat and do the multiplication that you want. It does a multiplication that you
don’t want. There are a few ways to get your multiplication, among them are:

xmat * rep(yvec, each=nrow(xmat))

and

sweep(xmat, 2, yvec, ’*’)

The sweep function is quite general—make friends with it. The scale function
can be useful for related problems.
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single subscript of a data frame or array

Be careful of the number of commas when subscripting data frames and ma-
trices. It is perfectly acceptable to subscript with no commas—this treats the
object as its underlying vector rather than a two dimensional object. In the case
of a data frame, the underlying object is a list and the single subscript refers to
the columns of the data frame. For matrices the underlying object is a vector
with length equal to the number of rows times the number of columns.

non-numeric argument

> median(x)

Error in median.default(x) : need numeric data

If you get an error like this, it could well be because x is a data frame, or possibly
a factor. If the former, then you probably meant to say:

median(x[, 1])

round rounds to even

The round function rounds to even if it is rounding off an exact 5.
Some people are surprised by this. I’m surprised that they are surprised—

rounding to even is the sensible thing to do. If you want a function that rounds
up, write it yourself.

Some times there is the surprise that an exact 5 is not rounded to even. This
will be due to Circle 1—what is apparently an exact 5 probably isn’t.

creating empty lists

You create a numeric vector of length 500 with:

numeric(500)

So obviously you create a list of length 500 with:

list(500)

Right?
No. A touch of finesse is needed:

vector(’list’, 500)

Note that this command hints at the fact that lists are vectors in some sense.
When “vector” is used in the sense of an object that is not a list, it is really
shorthand for “atomic vector”.
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list subscripting

my.list <- list(’one’, rep(2, 2))

There is a difference between

my.list[[1]]

and

my.list[1]

The first is likely what you want—the first component of the list. The second is
a list of length one whose component is the first component of the original list.

NULL or delete

If you have a list xl and you want component comp not to be there any more,
you have some options. If comp is the index of the component in question, then
the most transparent approach is:

xl <- xl[-comp]

In any case you can do:

xl[[comp]] <- NULL

or

xl[comp] <- NULL

The first two work in S+ as well, but the last one does not—it has no effect in
S+.

If you want the component to stay there but to be NULL, then do:

xl[comp] <- list(NULL)

Notice single brackets, not double brackets.

disappearing components

A for loop can drop components of a list that it is modifying.

> xl.in <- list(A=c(a=3, z=4), B=NULL, C=c(w=8), D=NULL)

> xl.out <- vector(’list’, 4); names(xl.out) <- names(xl.in)

> for(i in 1:4) xl.out[[i]] <- names(xl.in[[i]])

> xl.out

$A
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[1] "a" "z"

$C

NULL

$D

[1] "w"

> xl.out2 <- lapply(xl.in, names)

> xl.out2

$A

[1] "a" "z"

$B

NULL

$C

[1] "w"

$D

NULL

Note that the result from our for loop is MOST decidedly not what we want.
Possibly not even what we could have dreamed we could get.

Take care when NULL can be something that is assigned into a component of
a list. Using lapply can be a good alternative.

combining lists

Some people are pleasantly surprised that the c function works with lists. Then
they go on to abuse it.

> xlis <- list(A=1:4, B=c(’a’, ’x’))

> c(xlis, C=6:5)

$A

[1] 1 2 3 4

$B

[1] "a" "x"

$C1

[1] 6

$C2

[1] 5

Probably not what was intended. Try:

c(xlis, list(C=6:5))

disappearing loop

Consider the loop:

for(i in 1:10) i
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It is a common complaint that this loop doesn’t work, that it doesn’t do any-
thing. Actually it works perfectly well. The problem is that no real action is
involved in the loop. You probably meant something like:

for(i in 1:10) print(i)

Automatic printing of unassigned objects only happens at the top level.

limited iteration

One of my favorite tricks is to only give the top limit of iteration rather than
the sequence:

for(i in trials) { ... }

rather than

for(i in 1:trials) { ... }

Then I wonder why the results are so weird.

too much iteration

for(i in 1:length(x)) { ... }

is fine if x has a positive length. However, if its length is zero, then R wants to
do two iterations. A safer idiom is:

for(i in seq along(x)) { ... }

or if you want to be compatible with S+:

for(i in seq(along=x)) { ... }

wrong iterate

The for iterate can be from any vector. This makes looping much more general
than in most other languages, but can allow some users to become confused:

nums <- seq(-1, 1, by=.01)

ans <- NULL

for(i in nums) ans[i] <- i^2

This has two things wrong with it. You should recognize that we have tried
(but failed) to visit Circle 2 here, and the index on ans is not what the user is
expecting. Better would be:
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nums <- seq(-1, 1, by=.01)

ans <- numeric(length(nums))

for(i in seq(along=nums)) ans[i] <- nums[i]^2

Even better, of course, would be to avoid a loop altogether. That is possible in
this case, perhaps not in a real application.

wrong iterate (encore)

A loop like:

for(i in 0:9) {
this.x <- x[i]

...

does not do as intended. While C and some other languages index from 0, R
indexes from 1. The unfortunate thing in this case is that an index of 0 is
allowed in R, it just doesn’t do what is wanted.

iterate is sacrosanct

In the following loop there are two objects named ’i’.

for(i in 1:10) {i <- rpois(1, lambda=1); print(i)}

The i that is created in the body of the loop is a separate entity from the i that
controls the iterations. This is unlike a number of other languages (including
S+). If you really need this sort of behavior, then use while.

A bizarre example is:

for(i in 1:6) {
cat(’\n i is’, i, ’\n\n’)
for(i in 1:4) cat(’i is’, i, ’\n’)

}

Once a loop exits, the value of the iterate is the last value it has taken on. In
our bizarre example here it seems like a toss-up which value should actually be
taken on. If you were to ever care which, you should definitely change your
code.

empty string

Do not confuse

character(0)

with
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""

The first is a vector of length zero whose elements would be character if it had
any. The second is a vector of length one, and the element that it has is the
empty string.

The result of nchar on the first object is a numeric vector of length zero,
while the result of nchar on the second object is 0—that is, a vector of length
one whose first and only element is zero.

NA the string

There is a missing value for character data. In normal printing (with quotes
around strings) the missing value is printed as NA; but when quotes are not
used, it is printed as <NA>. This is to distinguish it from the string ’NA’:

> cna <- c(’missing value’=NA, ’real string’=’NA’)

> cna

missing value real string

NA "NA"

> noquote(cna)

missing value real string

<NA> NA

NA the string really does happen. It is Nabisco in finance, North America
in geography, and possibly sodium in chemistry. There are circumstances—
particularly when reading data into R—where NA the string becomes NA the
missing value. Having a name or dimname that is accidentally a missing value
can be an unpleasant experience.

If you have missing values in a character vector, you may want to take some
evasive action when operating on the vector:

> people <- c(’Alice’, NA, ’Eve’)

> paste(’hello’, people)

[1] "hello Alice" "hello NA" "hello Eve"

> ifelse(is.na(people), people, paste(’hello’, people))

[1] "hello Alice" NA "hello Eve"

capitalization

Some people have a hard time with the fact that R is case-sensitive. Being case-
sensitive is a good thing. The case of letters REALLy doEs MakE a diFFerencE.
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scoping

Scoping problems are uncommon in R because R uses scoping rules that are
intuitive in almost all cases. An issue with scoping is most likely to arise when
moving S+ code into R.

Perhaps you want to know what “scoping” means. In the evaluator if at
some point an object of a certain name, z say, is needed, then we need to know
where to look for z. Scoping is the set of rules of where to look.

Here is a small example:

> z <- ’global’

> myTopFun

function () {
subfun <- function() {

paste(’used:’, z)

}
z <- ’inside myTopFun’

subfun()

}
> myTopFun()

[1] "used: inside myTopFun"

The z that is used is the one inside the function. Let’s think a bit about what is
not happening. At the point in time that subfun is defined, the only z about is
the one in the global environment. When the object is assigned is not important.
Where the object is assigned is important. Also important is the state of the
relevant environments when the function is evaluated.

scoping (encore)

The most likely place to find a scoping problem is with the modeling functions.
Let’s explore with some examples.

> scope1

function () {
sub1 <- function(form) coef(lm(form))

xx <- rnorm(12)

yy <- rnorm(12, xx)

form1 <- yy ~ xx

sub1(form1)

}
> scope1()

(Intercept) xx

-0.07609548 1.33319273

> scope2

function () {
sub2 <- function() {
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form2 <- yy ~ xx

coef(lm(form2))

}
xx <- rnorm(12)

yy <- rnorm(12, xx)

sub2()

}
> scope2()

(Intercept) xx

-0.1544372 0.2896239

The scope1 and scope2 functions are sort of doing the same thing. But scope3
is different—it is stepping outside of the natural nesting of environments.

> sub3

function () {
form3 <- yy ~ xx

coef(lm(form3))

}
> scope3

function () {
xx <- rnorm(12)

yy <- rnorm(12, xx)

sub3()

}
> scope3()

Error in eval(expr, envir, enclos) : Object "yy" not found

One lesson here is that the environment of the calling function is not (necessar-
ily) searched. (In technical terms that would be dynamic scope rather than the
lexical scope that R uses.)

There are of course solutions to this problem. scope4 solves the problem by
saying where to look for the data to which the formula refers.

> sub4

function (data) {
form4 <- yy ~ xx

coef(lm(form4, data=data))

}
> scope4

function () {
xx <- rnorm(12)

yy <- rnorm(12, xx)

sub4(sys.nframe())

}
> scope4()

(Intercept) xx

0.6303816 1.0930864
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Figure 8: The treacherous to kin and the treacherous to country by Sandro
Botticelli.

Another possibility is to change the environment of the formula, as scope5 does:

> sub5

function (data) {
form5 <- eval(substitute(yy ~ xx), envir=data)

coef(lm(form5))

}
> scope5

function () {
xx <- rnorm(12)

yy <- rnorm(12, xx)

sub5(sys.nframe())

}
> scope5()

(Intercept) xx

0.1889312 1.4208295

Some caution with solutions is warranted—not all modeling functions follow the
same scoping rules for their arguments.
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8.2 Chimeras

“What brings you into such pungent sauce?”

There is no other type of object that creates as much trouble as factors.
Factors are an implementation of the idea of categorical data. (The name ’factor’
might cause trouble in itself—the term arrives to us via designed experiments.)

The core data of a factor is an integer vector. The class attribute is
"factor", and there is a levels attribute that is a character vector that pro-
vides the identity of each category. You may be able to see trouble coming
already—a numeric object that conceptually is not at all numeric.

But R tries to save you from yourself:

> is.numeric(factor(1:4))

[1] FALSE

Factors can be avoided in some settings by using character data instead. Some-
times this is a reasonable idea. However, if there are repeats, then a factor can
use much less memory than the corresponding character vector.

numeric to factor to numeric

While in general factors do not refer to numbers, they may do. In which case
we have even more room for confusion.

> as.numeric(factor(101:103))

[1] 1 2 3

If you were expecting:

[1] 101 102 103

shame on you.
If your factor represents numbers and you want to recover those numbers

from the factor, then you need a more circuitous route to get there:

as.numeric(as.character(factor(101:103)))

Slightly more efficient, but harder to remember is:

as.numeric(levels(f))[f]

where f is the factor.

cat factor

Using cat on any factor will just give the core data:

> cat(factor(letters[1:5]))

1 2 3 4 5>
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numeric to factor accidentally

When using read.table or its friends, it is all too common for a column of data
that is meant to be numeric to be read as a factor. This happens if na.strings
is not properly set, if there is a bogus entry in the column, and probably many
other circumstances.

This is dynamite.

The data are thought to be numeric. They are in fact numeric (at least sort
of), but decidedly not with the numbers that are intended. Hence you can end
up with data that ’works’ but produces complete garbage.

When processing the data, the construct:

as.numeric(as.character(x))

guards you against this occurring. If x is already the correct numbers, then
nothing happens except wasting a few microseconds. If x is accidentally a
factor, then it becomes the correct numbers (at least mostly—depending on
why it became a factor there may be some erroneously missing values).

dropping factor levels

> ff <- factor(c(’AA’, ’BA’, ’CA’))

> ff

[1] AA BA CA

Levels: AA BA CA

> ff[1:2]

[1] AA BA

Levels: AA BA CA

Notice that there are still three levels even though only two appear in the vector.
It is in general a good thing that levels are not automatically dropped—the
factor then has the possible levels it can contain rather than merely the levels
it happens to contain.

There are times when you want levels dropped that do not appear. Here are
two ways of doing that:

> ff[1:2, drop=TRUE]

[1] AA BA

Levels: AA BA

> factor(ff[1:2])

[1] AA BA

Levels: AA BA

If f0 is a factor that already has levels that are not used that you want to drop,
then you can just do:

f0 <- f0[drop=TRUE]
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combining levels

Bizarre things have been known to happen from combining levels. A safe ap-
proach is to create a new factor object. Here we change from individual letters
to a vowel-consonant classification:

> flet <- factor(letters[c(1:5, 1:2)])

> flet

[1] a b c d e a b

Levels: a b c d e

> ftrans <- c(a=’vowel’, b=’consonant’, c=’consonant’,

+ d=’consonant’, e=’vowel’)

> fcv <- factor(ftrans[as.character(flet)])

> fcv

[1] vowel consonant consonant consonant vowel vowel consonant

Levels: consonant vowel

Probably more common is to combine some levels, but leave others alone:

> llet <- levels(flet)

> names(llet) <- llet

> llet

a b c d e

"a" "b" "c" "d" "e"

> llet[c(’a’, ’b’)] <- ’ab’

> llet

a b c d e

"ab" "ab" "c" "d" "e"

> fcom <- factor(llet[as.character(flet)])

> fcom

[1] ab ab c d e ab ab

Levels: ab c d e

do not subscript with factors

> x6 <- c(s=4, j=55, f=888)

> x6[c(’s’, ’f’)]

s f

4 888

> x6[factor(c(’s’, ’f’))]

j s

55 4
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no go for factors in ifelse

> ifelse(c(TRUE, FALSE, TRUE), factor(letters),

+ factor(LETTERS))

[1] 1 2 3

> ifelse(c(TRUE, FALSE, TRUE), factor(letters), LETTERS)

[1] "1" "B" "3"

(Recall that the length of the output of ifelse is always the length of the
first argument. If you were expecting the first argument to be replicated, you
shouldn’t have.)

no c for factors

c(myfac1, myfac2)

just gives you the combined vector of integer codes. Certainly a method for c

could be written for factors, but note it is going to be complicated—the levels
of the factors need not match. It would be horribly messy for very little gain.
This is a case in which R is not being overly helpful. Better is for you to do the
combination that makes sense for the specific case at hand.

A generally good solution is:

c(as.character(myfac1), as.character(myfac2))

Or maybe more likely factor of the above expression. Another possibility is:

unlist(list(myfac1, myfac2))

This last solution does not work for ordered factors.

ordering in ordered

You need a bit of care when creating ordered factors:

> ordered(c(100, 90, 110, 90, 100, 110))

[1] 100 90 110 90 100 110

Levels: 90 < 100 < 110

> ordered(as.character(c(100, 90, 110, 90, 100, 110)))

[1] 100 90 110 90 100 110

Levels: 100 < 110 < 90

The automatic ordering is done lexically for characters. This makes sense in
general, but not in this case. (Note that the ordering may depend on your
locale.) You can always specify levels to have direct control.

You can have essentially this same problem if you try to sort a factor.
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labels and excluded levels

The number of labels must equal the number of levels. Seems like a good rule.
These can be the same going into the function, but need not be in the end. The
issue is values that are excluded.

> factor(c(1:4,1:3), levels=c(1:4,NA), labels=1:5)

Error in factor(c(1:4, 1:3), levels = c(1:4, NA), ... :

invalid labels; length 5 should be 1 or 4

> factor(c(1:4,1:3), levels=c(1:4,NA), labels=1:4)

[1] 1 2 3 4 1 2 3

Levels: 1 2 3 4

> factor(c(1:4,1:3), levels=c(1:4,NA), labels=1:5,

+ exclude=NULL)

[1] 1 2 3 4 1 2 3

Levels: 1 2 3 4 5

And of course I lied to you. The number of labels can be 1 as well as the number
of levels:

> factor(c(1:4,1:3), levels=c(1:4,NA), labels=’Blah’)

[1] Blah1 Blah2 Blah3 Blah4 Blah1 Blah2 Blah3

Levels: Blah1 Blah2 Blah3 Blah4

is missing missing or missing?

Missing values of course make sense in factors. It is entirely possible that we
don’t know the category into which a particular item falls.

> f1 <- factor(c(’AA’, ’BA’, NA, ’NA’))

> f1

[1] AA BA <NA> NA

Levels: AA BA NA

> unclass(f1)

[1] 1 2 NA 3

attr(,"levels")

[1] "AA" "BA" "NA"

As we’ve already seen, there is a difference between a missing value and the
string ’NA’. In f1 there is a category that corresponds to the string ’NA’.
Values that are missing are indicated not by the usual NA, but by <NA> (to
distinguish them from ’NA’ the string when quotes are not used).

It is also possible to have a category that is missing values. This is achieved
by changing the exclude argument from its default value:

> f2 <- factor(c(’AA’, ’BA’, NA, ’NA’), exclude=NULL)

> f2
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[1] AA BA <NA> NA

Levels: AA BA NA NA

> unclass(f2)

[1] 1 2 4 3

attr(,"levels")

[1] "AA" "BA" "NA" NA

Unlike in f1 the core data of f2 has no missing values.

Let’s now really descend into the belly of the beast.

> f3 <- f2

> is.na(f3)[1] <- TRUE

> f3

[1] <NA> BA <NA> NA

Levels: AA BA NA NA

> unclass(f3)

[1] NA 2 4 3

attr(,"levels")

[1] "AA" "BA" "NA" NA

Here we have a level that is missing values, we also have a missing value in the
core data.2

data frame to character

> xdf3 <- data.frame(a=3:2, b=c(’x’, ’y’))

> as.character(xdf3[1,])

[1] "3" "1"

This is a hidden version of coercing a factor to character. One approach to get
the correct behavior is to use as.matrix:

> as.character(as.matrix(xdf3[1,]))

[1] "3" "x"

I’m not sure if it is less upsetting or more upsetting if you try coercing more
than one row of a data frame to character:

> as.character(xdf3)

[1] "c(3, 2)" "c(1, 2)"

2The author would be intrigued to hear of an application where this makes sense—an item
for which it is unknown if it is missing or not.
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nonexistent value in subscript

When a subscript contains values that are not present in the object, the results
vary depending on the context:

> c(b=1)[c(’a’, ’b’)]

<NA> b

NA 1

> list(b=1)[c(’a’, ’b’)]

$"NA"

NULL

$b

[1] 1

> matrix(1:2, 2, 1, dimnames=list(NULL, ’b’))[,c(’a’, ’b’)]

Error: subscript out of bounds

> matrix(1:2, 1, 2, dimnames=list(’b’, NULL))[c(’a’, ’b’),]

Error: subscript out of bounds

> data.frame(b=1:2)[, c(’a’, ’b’)]

Error in "[.data.frame"(data.frame(b = 1:2), , c("a", "b")) :

undefined columns selected

> data.frame(V1=1, V2=2, row.names=’b’)[c(’a’, ’b’),]

V1 V2

NA NA NA

b 1 2

Some people wonder why the names of the extraneous items show up as NA and
not as "a". An answer is that then there would be no indication that "a" was
not a name in the object.

The examples here are for character subscripts, similar behavior holds for
numeric and logical subscripts.

missing value in subscript

Here are two vectors that we will use:

> a <- c(rep(1:4, 3), NA, NA)

> b <- rep(1:2, 7)

> b[11:12] <- NA

> a

[1] 1 2 3 4 1 2 3 4 1 2 3 4 NA NA

> b

[1] 1 2 1 2 1 2 1 2 1 2 NA NA 1 2

We now want to create anew so that it is like a except it has 101 in the elements
where a is less than 2 or greater than 3, and b equals 1.

> anew <- a
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> anew[(a < 2 | a > 3) & b == 1] <- 101

> anew

[1] 101 2 3 4 101 2 3 4 101 2 3 4 NA NA

There were three values changed in anew; let’s try again but give different values
to those three:

> anew2 <- a

> anew2[(a < 2 | a > 3) & b == 1] <- 101:103

Error: NAs are not allowed in subscripted assignments

Now we get an error. Since the value being assigned into the vector has length
greater than 1, the assignment with missing values in the subscripts is ambigu-
ous. R wisely refuses to do it (frustrating as it may be). There is a simple
solution, however:

> anew2[which((a < 2 | a > 3) & b == 1)] <- 101:103

> anew2

[1] 101 2 3 4 102 2 3 4 103 2 3 4 NA NA

The which function effectively treats NA as FALSE.

But we still have a problem in both anew and anew2. The 12th element of
a is 4 (and hence greater than 3) while the 12th element of b is NA. So we don’t
know if the 12th element of anew should be changed or not. The 12th element
of anew should be NA:

> anew[is.na(b) & (a < 2 | a > 3)] <- NA

> anew

[1] 101 2 3 4 101 2 3 4 101 2 3 NA NA NA

missing value in if

if(NA) { # creates error

It is a rather common error for an if condition to be NA. When this occurs, it
is common for the problem to be non-obvious. Debugging is called for in that
case.

and and andand

An alternative title here could have been ’or or oror’.
There are two ’and’ operators and two ’or’ operators:
– 8 && 8 and 8 || 8 go with if

– 8 & 8 and 8 | 8 go with ifelse
8 && 8 and 8 || 8 , like if, expect single element inputs. Because they only deal
with single elements, they can do shortcuts. If the answer is known with the
first (left) argument, then there is no need to evaluate the second.
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> if(TRUE || stop()) 4 else 5

[1] 4

> if(TRUE && stop()) 4 else 5

Error:

> if(FALSE || stop()) 4 else 5

Error:

> if(FALSE && stop()) 4 else 5

[1] 5

This can be used to make sure that it is safe to perform a test, as in:

> if(ncol(x) > 6) { ...

Error in if (ncol(x) > 6) : argument is of length zero

> if(is.matrix(x) && ncol(x) > 6) { ... # okay

Note that in the last line x is excluded from being a data frame. If you want to
allow both data frames and matrices, then testing the length of dim(x) would
be an approach.

equal and equalequal

Just because 8 && 8 and 8 & 8 have similar purposes, don’t go thinking that 8 == 8

and 8 = 8 are similar. Completely different.
Fortunately R keeps you from making this error in a key context:

> if(x = 7) { ...

Error: unexpected ’=’ in "if(x ="

> if(x == 7) { ... # okay

is.integer

is.integer is a test of how the data are stored, it does not test if the numbers
are logically integers:

> is.integer(c(4, 0, 3))

[1] FALSE

If you really want integers (that is, stored in integer format), then use “L”:

> is.integer(c(4L, 0L, 3L))

[1] TRUE

> is.integer(c(4L, 0L, 3))

[1] FALSE

The key thing to say here is that, almost surely, you do not care if an object is
stored as integer. It is important if you are sending the data to C or Fortran.
Otherwise you can bask in the ease of letting R take care of details so you can
think about the big picture.
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is.numeric, as.numeric with integers

An integer vector tests TRUE with is.numeric. However, as.numeric changes
it from storage mode integer to storage mode double. If you care about it being
integer, then you want to use as.integer.

> is.integer(c(4L, 0L))

[1] TRUE

> is.numeric(c(4L, 0L))

[1] TRUE

> is.integer(as.numeric(c(4L, 0L)))

[1] FALSE

is.matrix

The is.matrix function can cause surprises, not least because it can give dif-
ferent answers in R and S+.

> is.matrix(1:3)

[1] FALSE

> is.matrix(array(1:3, c(3,1)))

[1] TRUE

> is.matrix(array(1:3, c(3,1,1)))

[1] FALSE

> is.matrix(array(1:3, 3))

[1] FALSE

> is.matrix(data.frame(1:3))

[1] FALSE # would be TRUE in S+

> is.matrix(t(1:3))

[1] TRUE

The definition of “matrix” that is.matrix uses is that it is an array with a
dim attribute of length 2. Note that the t function coerces a non-array to be a
(column) matrix and then does the transpose.

Some people want objects to be matrices by default. It isn’t going to happen.
R is a language of general objects, not a matrix language.

the switch switch

Partial matching of argument names can befuddle the use of switch in rare
circumstances.

> switch(’E’, A=1, B=2, E=5)

NULL

> switch(’E’, A=1, B=2, E=2)

[1] 1
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> switch(EXPR=’E’, A=1, B=2, E=5)

[1] 5

> switch(E=’E’, A=1, B=2, E=5)

Error in switch(E = "E", A = 1, B = 2, E = 5) :

formal argument "EXPR" matched by multiple actual arguments

The solution is to explicitly name the first argument to switch (EXPR) if a
selection will partially match it:

switch(EXPR=’E’, A=1, B=2, E=5)

This is a particularly nasty instance of partial matching of names in function
calls. The solution in the more common case is to write argument names fully.

The command:

options(warnPartialMatchArgs=TRUE)

tells R to warn you when partial argument name matches are used. This still
doesn’t make this switch problem transparent, but you do get a warning at
least.

max versus pmax

I care not to try to count the number of times I’ve got this wrong, nor to tally
the hours I’ve spent tracking down the problem. And I’m only thinking of the
time after I knew very well the difference between max and pmax (and min and
pmin).

Recall from Circle 3 that there are two senses of vectorization. max and pmax

are each vectorized but in opposite senses.

• max returns the single number that is the largest of all the input.

• pmax returns a vector that for each index location is the maximum across
inputs.

The ’p’ in pmax stands for ’parallel’.

all.equal returns a surprising value

We met all.equal in Circle 1 as an alternative to 8 == 8 . Numerical error causes
8 == 8 not to provide a useful result in many cases.

if(all(x == y)) { # wrong if there is numerical error

if(all.equal(x, y)) { # WRONG, not FALSE when not equal

if(isTRUE(all.equal(x, y)) { # right
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all.equal is not identical

The purpose of all.equal is to compare items that may have some fuzziness
to them. Sometimes the fuzziness that all.equal sees can be surprising:

> all.equal(as.numeric(NA), 0/0)

[1] TRUE

The identical function allows for no fuzziness at all:

> identical(as.numeric(NA), 0/0)

[1] FALSE

identical really really means identical

> xi <- 1:10

> yi <- 1:10

> identical(xi, yi[1:10])

[1] TRUE

> yi[11] <- 11

> identical(xi, yi[1:10])

[1] FALSE

> zi <- 1:10

> zi[11] <- 11L

> identical(xi, zi[1:10])

[1] TRUE

xi is stored as type integer. But once yi has been given one double value, it is
stored as double. As has already been stated, you are unlikely to need to care
about how numbers are stored. If you think you care without a specific instance
of why it matters, you should probably get over it.

8 = 8 is not a synonym of 8
<- 8

The 8 = 8 operator can mean the same thing as 8 <- 8 in a lot of circumstances,
but there are times when it is different.

Consider the command:

foo(93, a = 47)

versus

foo(93, a <- 47)

These two commands may lead to entirely different results. You clearly do not
want to use 8 <- 8 when you want to set an argument of a function.

A common occurrence where you don’t want to use 8 = 8 where 8 <- 8 is meant
is:
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system.time(result <- my.test.function(100))

If you used 8 = 8 in the command above, R would think you were trying to set the
result argument of system.time, which doesn’t exist. (If using system.time

is not a common occurrence for you, perhaps it should be.)
Standard advice is to avoid using 8 = 8 when you mean 8 <- 8 even though it

takes an extra keystroke.

complex arithmetic

The precedence with complex numbers may well not be what you expect. Con-
sider the command:

> 1+3i - 3+5i

[1] -2+8i

complex is not numeric

> is.numeric(1+3i)

[1] FALSE

Complex numbers are numbers, but they are not numeric in R’s sense. To test
for numbers in the broader sense, you need:

is.numeric(x) || is.complex(x)

nonstandard evaluation

There are a few functions that allow names of objects as well as a character
string of the name. For example:

help(subset)

works where

help(’subset’)

is what really makes sense.
The functions that do this are meant for interactive use. The intention of

allowing names is to be helpful. Such helpfulness seems like a mixed blessing.
It is hard to tell what the net time savings is of removing two keystrokes versus
the periodic confusion that it causes.

If the named object contains a character string of what is really wanted,
some of these functions give you what you want while others (often of necessity)
do not.
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foo <- ’subset’

help(foo) # gets help on subset

getAnywhere(foo) # finds foo, not subset

do.call(’getAnywhere’, list(foo)) # finds subset

A partial list of functions that have non-standard evaluation of arguments are:
help, rm, save, attach, library, subset, replicate.

The library function has a program-safety mechanism in the form of the
character.only argument.

library(foo) # load package foo

library(foo, character.only=FALSE) # load package foo

library(foo, character.only=TRUE) # load package named by foo

help for for

The logical thing to do to get help for for is:

?for

That doesn’t work. Using the help function breaks in a seemingly different way:

help(for)

Instead do (for instance):

?’for’

help(’for’)

subset

The subset function is meant to provide convenience in interactive use. It
often causes inconvenience and confusion when used inside functions. Use usual
subscripting, not subset, when writing functions.

Patient: Doc, it hurts when I do this.
Doctor: Don’t do that.

Here is an example of subset in action:

> xdf5 <- data.frame(R=1:2, J=3:4, E=5:6, K=7:8)

> subset(xdf5, select=J:K)

J E K

1 3 5 7

2 4 6 8

> subset(xdf5, select=-E)

R J K

1 1 3 7

2 2 4 8
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The select argument allows VERY non-standard use of the 8 : 8 and 8 - 8 oper-
ators. This can be a handy shortcut for interactive use. There is a grave danger
of users expecting such tricks to work in other contexts. Even in interactive use
there is the danger of expecting J:K to pertain to alphabetic order rather than
order within the data frame.

8 = 8 vs 8 == 8 in subset

There is a big difference between:

subset(Theoph, Subject = 1)

and

subset(Theoph, Subject == 1)

The latter is what is intended, the former does not do any subsetting at all.

single sample switch

The sample function has a helpful feature that is not always helpful. Its first
argument can be either the population of items to sample from, or the number
of items in the population. There’s the rub.

> sample(c(4.9, 8.6), 9, replace=TRUE)

[1] 4.9 4.9 8.6 4.9 8.6 4.9 8.6 4.9 8.6

> sample(c(4.9), 9, replace=TRUE)

[1] 2 3 3 2 4 4 3 4 1

If the population is numeric, at least 1 and of size one (due, say, to selection
within a function), then it gets interpreted as the size of the population. Note
in the example above the size is rounded down to the nearest integer.

There is a kludgy workaround, which is to make the population character:

> as.numeric(sample(as.character(c(4.9)), 9, replace=TRUE))

[1] 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9

changing names of pieces

R does an extraordinary job of ferreting out replacement statements. For ex-
ample, the following actually does what is intended:

names(mylist$b[[1]]) <- letters[1:10]

It is possible to get it wrong though. Here is an example:
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> right <- wrong <- c(a=1, b=2)

> names(wrong[1]) <- ’changed’

> wrong

a b

1 2

> names(right)[1] <- ’changed’

> right

changed b

1 2

What goes wrong is that we change names on something that is then thrown
away. So to change the first two names in our ridiculous example, we would do:

names(mylist$b[[1]])[1:2] <- LETTERS[1:2]

a puzzle

> class(dfxy)

[1] "data.frame"

> length(dfxy)

[1] 8

> length(as.matrix(dfxy))

[1] 120

What is

nrow(dfxy)

another puzzle

If the following is a valid command:

weirdFun()()()

what does weirdFun return?
Write an example.

data frames vs matrices

A matrix and a data frame look the same when printed. That is good—they are
conceptually very similar. However, they are implemented entirely differently.

Objects that are conceptually similar but implemented differently are a good
source of confusion.

> x %*% y

Error in x %*% y : requires numeric matrix/vector arguments
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The problem here is that while x looks like a matrix, it is actually a data frame.
A solution is to use as.matrix, or possibly data.matrix,

In theory the actual implementation of data frames should not matter at all
to the user. Theory often has some rough edges.

apply not for data frames

One rough edge is applying a function to a data frame. The apply function
often doesn’t do what is desired because it coerces the data frame to a matrix
before proceeding.

apply(myDataFrame, 2, class) # not right

Data frames are actually implemented as a list with each component of the list
being a column of the data frame. Thus:

lapply(myDataFrame, class)

does what was attempted above.

data frames vs matrices (reprise)

Consider the command:

array(sample(x), dim(x))

This permutes the elements of a matrix. If x is a data frame, the command will
work but the result will most assuredly not be what you want.

It is possible to get a column of a data frame with a command like:

x$B

If you try this with a matrix you’ll get an error similar to:

Error in x$B : $ operator is invalid for atomic vectors

If your x might be either a data frame or a matrix, it will be better to use:

x[, ’B’]

On the other hand, if you want to rule out the possibility of a matrix then 8 $ 8

might be the better choice.

Operations with data frames can be slower than the same operation on the
corresponding matrix. In one real-world case, switching from data frames to
matrices resulted in about four times the speed.

Simpler is better.
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data frame equal number of rows

A data frame is implemented as a list. But not just any list will do—each
component must represent the same number of rows. If you work hard enough,
you might be able to produce a data frame that breaks the rule. More likely
your frustration will be that R stops you from getting to such an absurd result.

matrices in data frames

Let’s make two data frames:

> ymat <- array(1:6, c(3,2))

> xdf6 <- data.frame(X=101:103, Y=ymat)

> xdf7 <- data.frame(X=101:103)

> xdf7$Y <- ymat

> xdf6

X Y.1 Y.2

1 101 1 4

2 102 2 5

3 103 3 6

> xdf7

X Y.1 Y.2

1 101 1 4

2 102 2 5

3 103 3 6

> dim(xdf6)

[1] 3 3

> dim(xdf7)

[1] 3 2

They print exactly the same. But clearly they are not the same since they have
different dimensions.

> xdf6[, ’Y.1’]

[1] 1 2 3

> xdf7[, ’Y.1’]

Error in "[.data.frame"(xdf7, , "Y.1") :

undefined columns selected

> xdf6[, ’Y’]

Error in "[.data.frame"(xdf6, , "Y") :

undefined columns selected

> xdf7[, ’Y’]

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6
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xdf6 includes components Y.1 and Y.2. xdf7 does not have such components
(in spite of how it is printed)—it has a Y component that is a two-column matrix.

You will surely think that allowing a data frame to have components with
more than one column is an abomination. That will be your thinking unless,
of course, you’ve had occasion to see it being useful. The feature is worth the
possible confusion, but perhaps a change to printing could reduce confusion.

8.3 Devils

The most devilish problem is getting data from a file into R correctly.

read.table

The read.table function is the most common way of getting data into R.
Reading its help file three times is going to be very efficient time management if
you ever use read.table. In particular the header and row.names arguments
control what (if anything) in the file should be used as column and row names.

Another time management tool is to inspect the result of the data you have
read before attempting to use it.

read a table

The read.table function does not create a table—it creates a data frame. You
don’t become a book just because you read a book. The table function returns
a table.

The idea of read.table and relatives is that they read data that are in a
rectangular format.

the missing, the whole missing and nothing but the missing

Misreading missing values is an efficacious way of producing garbage. Missing
values can become non-missing, non-missing values can become missing, logi-
cally numeric columns can become factors.

The na.strings argument to read.table needs to be set properly. An
example might be:

na.strings=c(’.’, ’-999’)

misquoting

A quite common file format is to have a column of names followed by some
number of columns of data. If there are any apostrophes in those names, then
you are likely to get an error reading the file unless you have set the quote

argument to read.table. A likely value for quote is:
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Figure 9: The treacherous to country and the treacherous to guests and hosts
by Sandro Botticelli.

quote=’’

This sounds like easy advise, but almost surely it is not going to be apparent
that quotes are the problem. You may get an error that says there was the
wrong number of items in a line. When you get such an error, it is often a
good idea to use count.fields to get a sense of what R thinks about your file.
Something along the lines of:

foo.cf <- count.fields(’foo.txt’, sep=’\t’)
table(foo.cf)

thymine is TRUE

You are reading in DNA bases identified as A, T, G and C. The columns are
read as factors. Except for the column that is all T—that column is logical.

The solution is to use the read.table argument:

colClasses=’character’

or
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colClasses=’factor’

as you like.
If there are columns of other sorts of data, then you need to give colClasses

a vector of appropriate types for the columns in the file.
Using colClasses can also make the call much more efficient.

whitespace is white

Whitespace is invisible, and we have a predilection to believe that invisible
means non-existent.

> factor(c(’A ’, ’A’, ’B’))

[1] A A B

Levels: A A B

It is extraordinarily easy to get factors like this when reading in data. Setting
the strip.white argument of read.table to TRUE can prevent this.

extraneous fields

When a file has been created in a spreadsheet, there are sometimes extraneous
empty fields in some of the lines of the file. In such a case you might get an
error similar to:

> mydat <- read.table(’myfile’, header=TRUE, sep=’\t’)
Error in scan(file, what, nmax, sep, dec, quote, skip, :

line 10 did not have 55 elements

This, of course, is a perfect instance to use count.fields to see what is going
on. If extraneous empty fields do seem to be the problem, then one solution is:

> mydat <- read.table(’myfile’, header=TRUE, sep=’\t’,
+ fill=TRUE)

> mydat <- mydat[, 1:53]

At this point, it is wiser than usual to carefully inspect the results to see that
the data are properly read and aligned.

reading messy files

read.table and its relatives are designed for files that are arranged in a tabular
form. Not all files are in tabular form. Trying to use read.table or a relative
on a file that is not tabular is unwise—you can end up with mangled data.

Two functions used to read files with a more general layout are scan and
readLines.

87



non-vectorized function in integrate

The integrate function expects a vectorized function. When it gives an argu-
ment of length 127, it expects to get an answer that is of length 127. It shares
its displeasure if that is not what it gets:

> fun1 <- function(x) sin(x) + sin(x-1) + sin(x-2) + sin(x-3)

> integrate(fun1, 0, 2)

-1.530295 with absolute error < 2.2e-14

> fun2 <- function(x) sum(sin(x - 0:3))

> integrate(fun2, 0, 2)

Error in integrate(fun2, 0, 2) :

evaluation of function gave a result of wrong length

In addition: Warning message:

longer object length

is not a multiple of shorter object length in: x - 0:3

> fun3 <- function(x) rowSums(sin(outer(x, 0:3, ’-’)))

> integrate(fun3, 0, 2)

-1.530295 with absolute error < 2.2e-14

fun1 is a straightforward implementation of what was wanted, but not easy
to generalize. fun2 is an ill-conceived attempt at mimicking fun1. fun3 is
a proper implementation of the function using outer as a step in getting the
vectorization correct.

non-vectorized function in outer

The function given to outer needs to be vectorized (in the usual sense):

> outer(1:3, 4:1, max)

Error in dim(robj) <- c(dX, dY) :

dims [product 12] do not match the length of object [1]

> outer(1:3, 4:1, pmax)

[,1] [,2] [,3] [,4]

[1,] 4 3 2 1

[2,] 4 3 2 2

[3,] 4 3 3 3

> outer(1:3, 4:1, Vectorize(function(x, y) max(x, y)))

[,1] [,2] [,3] [,4]

[1,] 4 3 2 1

[2,] 4 3 2 2

[3,] 4 3 3 3

The Vectorize function can be used to transform a function (by essentially
adding a loop—it contains no magic to truly vectorize the function).
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ignoring errors

You have a loop in which some of the iterations may produce an error. You
would like to ignore any errors and proceed with the loop. One solution is to
use try.

The code:

ans <- vector(’list’, n)

for(i in seq(length.out=n)) {
ans[[i]] <- rpois(round(rnorm(1, 5, 10)), 10)

}

will fail when the number of Poisson variates requested is negative. This can be
modified to:

ans <- vector(’list’, n)

for(i in seq(length.out=n)) {
this.ans <- try(rpois(round(rnorm(1, 5, 10)), 10))

if(!inherits(this.ans, ’try-error’)) {
ans[[i]] <- this.ans

}
}

Another approach is to use tryCatch rather than try:

ans <- vector(’list’, n)

for(i in seq(length.out=n)) {
ans[[i]] <- tryCatch(rpois(round(rnorm(1, 5, 10)), 10),

error=function(e) NaN)

}

accidentally global

It is possible for functions to work where they are created, but not to work in
general. Objects within the function can be global accidentally.

> myfun4 <- function(x) x + y

> myfun4(30)

[1] 132

> rm(y)

> myfun4(30)

Error in myfun4(30) : Object "y" not found

The findGlobals function can highlight global objects:

> library(codetools)

> findGlobals(myfun4)

[1] "+" "y"

89



handling 8 ... 8

The 8 ... 8 construct can be a slippery thing to get hold of until you know the
trick. One way is to package it into a list:

function(x, ...) {
dots <- list(...)

if(’special.arg’ %in% names(dots)) {
# rest of function

}

Another way is to use match.call:

function(x, ...) {
extras <- match.call(expand.dots=FALSE)$...

# rest of function

}

If your function processes the arguments, then you may need to use do.call:

function(x, ...) {
# ...

dots <- list(...)

ans <- do.call(’my.other.fun’, c(list(x=x),

dots[names(dots) %in% spec]))

# ...

}

laziness

R uses lazy evaluation. That is, arguments to functions are not evaluated until
they are required. This can save both time and memory if it turns out the
argument is not required.

In extremely rare circumstances something is not evaluated that should be.
You can use force to get around the laziness.

> xr <- lapply(1:4, function(i) function() i^2)

> sapply(1:4, function(j) xr[[j]]())

[1] 16 16 16 16

> xf <- lapply(1:4, function(i) {force(i); function() i^2})
> sapply(1:4, function(j) xf[[j]]())

[1] 1 4 9 16

Extra credit for understanding what is happening in the xr example.
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lapply laziness

lapply does not evaluate the calls to its FUN argument. Mostly you don’t care.
But it can have an effect if the function is generic. It is safer to say:

lapply(xlist, function(x) summary(x))

than to say:

lapply(xlist, summary)

invisibility cloak

In rare circumstances the visibility of a result may not be as expected:

> myfun6 <- function(x) x

> myfun6(zz <- 7)

> .Last.value

[1] 7

> a6 <- myfun6(zz <- 9)

> a6

[1] 9

> myfun6(invisible(11))

> myfun7 <- function(x) 1 * x

> myfun7(invisible(11))

[1] 11

evaluation of default arguments

Consider:

> myfun2 <- function(x, y=x) x + y

> x <- 100

> myfun2(2)

[1] 4

> myfun2(2, x)

[1] 102

Some people expect the result of the two calls above to be the same. They
are not. The default value of an argument to a function is evaluated inside the
function, not in the environment calling the function.

Thus writing a function like the following will not get you what you want.

> myfun3 <- function(x=x, y) x + y

> myfun3(y=3)

Error in myfun3(y = 3) : recursive default argument reference
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(The actual error message you get may be different in your version of R.)

The most popular error to make in this regard is to try to imitate the default
value of an argument. Something like:

> myfun3 <- function(x, n=xlen) { xlen <- length(x); ...}
> myfun3(myx, n=xlen-2)

xlen is defined inside myfun3 and is not available for you to use when calling
myfun3.

sapply simplification

The sapply function “simplifies” the output of lapply. It isn’t always so simple.
That is, the simplification that you get may not be the simplification you expect.
This uncertainty makes sapply not so suitable for use inside functions.

one-dimensional arrays

Arrays can be of any positive dimension (modulo memory and vector length
limits). In particular, one-dimensional arrays are possible. Almost always these
look and act like plain vectors. Almost.

Here is an example where they don’t:

> df <- data.frame(x=rep(1, 3), y=tapply(1:9,

+ factor(rep(c(’A’, ’B’, ’C’), each=3)), sum))

> df

x y

A 1 6

B 1 15

C 1 24

> tapply(df$y, df$x, length)

1

3

> by(df$y, df$x, length)

INDICES: 1

[1] 1

> by(as.vector(df$y), df$x, length)

INDICES: 1

[1] 3

tapply returns an array, in particular it can return a one-dimensional array—
which is the case with df$y. The by function in this case when given a one-
dimensional array produces the correct answer to a question that we didn’t
think we were asking.

One-dimensional arrays are neither matrices nor (exactly) plain vectors.
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by is for data frames

The by function is essentially just a pretty version of tapply for data frames.
The “for data frames” is an important restriction. If the first argument of your
call to by is not a data frame, you may be in for trouble.

> tapply(array(1:24, c(2,3,4)), 1:24 %% 2, length)

0 1

12 12

> by(array(1:24, c(2,3,4)), 1:24 %% 2, length)

Error in tapply(1:2L, list(INDICES = c(1, 0, 1, 0, 1, 0, 1, :

arguments must have same length

In this example we have the good fortune of an error being triggered, we didn’t
have that for the previous problem.

stray backquote

A stray backquote in a function definition can yield the error message:

symbol print-name too long

The backquote is sometimes (too) close to the tab key and/or the escape key.
It is also close to minimal size and hence easy to overlook.

posix length

We have a vector of two strings of date-times that we want to make into a more
formal object:

> datetime <- strptime(c(’2008-04-20 10:30:02’,

+ ’2008-05-23 23:54:23’), format=’%Y-%m-%d %H:%M:%S’)

> length(datetime)

[1] 9

At this point the natural reaction is to say that we started with 2 times and
now we have 9; where did the other 7 come from? (In practice, it is usually the
other way around: we start with 1000 times and wonder what happened to the
other 991 times.)

Rather than panicking, let’s explore:

> class(datetime)

[1] "POSIXt" "POSIXlt"

> names(datetime)

[1] "sec" "min" "hour" "mday" "mon" "year" "wday" "yday"

[9] "isdst"
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The structure of our datetime object is essentially like a data frame—that is,
a list in which each component is some bit of information about each of our
observations.

If you want an object that really really has the same length as your original
string, you probably want to coerce to POSIXct:

> length(as.POSIXct(datetime))

[1] 2

array dimension calculation

There are times when the creation of matrices fails to be true to the intention:

> mf <- matrix(runif((2 - .1) / .1 * 5), ncol=5)

Warning message: data length [94] is not a sub-multiple or

multiple of the number of rows [19] in matrix

Notice that the matrix is created—that is a warning not an error—the matrix
is merely created inappropriately. If you ignore the warning, there could be
consequences down the line.

Let’s investigate the ingredients:

> (2 - .1) / .1

[1] 19

> (2 - .1) / .1 - 19

[1] -3.552714e-15

> as.integer((2 - .1) / .1)

[1] 18

When R coerces from a floating point number to an integer it truncates rather
than rounds.

The moral of the story is that round can be a handy function to use. In a
sense this problem really belongs in Circle 1, but the subtlety makes it difficult
to find.

replacing pieces of a matrix

We have two matrices:

> m6 <- matrix(1:6, 3)

> m4 <- matrix(101:104, 2)

> m6

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6
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> m4

[,1] [,2]

[1,] 101 103

[2,] 102 104

Our task is to create a new matrix similar to m6 where some of the rows are
replaced by the first row of m4. Here is the natural thing to do:

> m6new <- m6

> m6new[c(TRUE, FALSE, TRUE), ] <- m4[1,]

> m6new

[,1] [,2]

[1,] 101 101

[2,] 2 5

[3,] 103 103

We are thinking about rows being the natural way of looking at the problem.
The problem is that that isn’t the R way, despite the context.

One way of getting what we want is:

> s6 <- c(TRUE, FALSE, TRUE)

> m6new[s6, ] <- rep(m4[1,], each=sum(s6))

> m6new

[,1] [,2]

[1,] 101 103

[2,] 2 5

[3,] 101 103

reserved words

R is a language. Because of this, there are reserved words that you can not use
as object names. Perhaps you can imagine the consequences if the following
command actually worked:

FALSE <- 4

You can see the complete list of reserved words with:

?Reserved

return is a function

Unlike some other languages return is a function that takes the object meant
to be returned. The following construct does NOT do what is intended:

return (2/5) * 3:9

It will return 0.4 and ignore the rest.
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return is a function (still)

return is a function and not a reserved word.

> # kids, don’t try this at home

> return <- function(x) 4 * x

> # notice: no error

> rm(return)

BATCH failure

Friday afternoon you start off a batch job happy in the knowledge that come
Monday morning you will have the results of sixty-some hours of computation
in your hands. Come Monday morning results are nowhere to be found. The
job fell over after an hour because of a stray comma in your file of commands.

Results can’t be guaranteed, but it is possible to at least test for that stray
comma and its mates. Once you’ve written your file of commands, parse the
file:

parse(file=’batchjob.in’)

If there is a syntax error in the file, then you’ll get an error and a location for
the (first) error. If there are no syntax errors, then you’ll get an expression (a
large expression).

syntax errors

Syntax errors are one of the most common problems, especially for new users.
Unfortunately there is no good way to track down the problem other than
puzzling over it. The most common problems are mismatched parentheses or
square brackets, and missing commas.

Using a text editor that performs syntax highlighting can eliminate a lot of
the problems.

Here is a particularly nasty error:

> lseq <- seq(0, 1, 1ength=10)

Error: unexpected input in "seq(0, 1, 1en"

general confusion

If you are getting results that are totally at odds with your expectations, look
where you are stepping:

• Objects may be different than you expect. You can use str to diagnose
this possibility. (The output of str may not make much sense immedi-
ately, but a little study will reveal what it is saying.)
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• Functions may be different than you expect. Try using conflicts to
diagnose this.

• Pretty much the only thing left is your expectations.

Calls to browser, cat and debugger can help you eliminate ghosts, chimeras
and devils. But the most powerful tool is your skepticism.

9 Being Unhelpful When Asking for Help

Here live the thieves, guarded by the centaur Cacus. The inhabitants are bitten
by lizards and snakes.

There’s a special place for those who—not being content with one of the 8
Circles we’ve already visited—feel compelled to drag the rest of us into hell.

The road to writing a mail message should include at least the following
stops:

9.1 Read the appropriate documentation.

“RTFM” in the jargon. There is a large amount of documentation about R, both
official and contributed, and in various formats. A large amount of documenta-
tion means that it is often nontrivial to find what you are looking for—especially
when frustration is setting in and blood pressure is rising.

Breathe.

There are various searches that you can do. R functions for searching include
help.search, RSiteSearch and apropos.

If you are looking for particular functionality, then check the Task Views
(found on the left-side menu of CRAN).

If you have an error, then look in rather than out—debug the problem.
One way of debugging is to set the error option, and then use the debugger

function:

options(error=dump.frames)

# command that causes the error

debugger()

The debugger function then provides a menu of the stack of functions that have
been called at the point of the error. You can inspect the state of the objects
inside these functions, and hopefully understand what the problem is.

As Virgil said to me, “I’m pleased with all your questions, but one of them
might have found its answer when you saw the red stream boiling.”
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Figure 10: The thieves by Sandro Botticelli.

9.2 Check the FAQ

Most occurrences of questions are frequently asked questions. Looking through
the FAQ will often solve your problem. Even if it doesn’t, you will probably
learn some things that will avoid later frustration.

9.3 Update

Sometimes you are having a problem that has already been fixed. If the problem
is in a contributed package, you can do:

update.packages()

But this will only give you the latest possible package given the version of R
that you are running. If you are using an old version of R, then you can miss
out on fixes in packages.

There can also be problems if some packages are updated while others are
not.

9.4 Read the posting guide

This will give you another point of view about how to approach the remaining
steps. In particular, it will instruct you on what types of questions belong on
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the various mailing lists.
Another good resource (not specific to R, but apropos) is a web page called

“How to ask questions the smart way”.

If you have faithfully performed the tasks up to here, you probably do not
need to continue. But do continue if it is warranted.

You can do:

help.request()

on some platforms. This will create a file containing some of the important
information that should be in the message. It also reminds you of steps that
you should take.

9.5 Select the best list

Your choices are R-help, R-devel and the special interest groups. Or the Biocon-
ductor list if your question relates to a Bioconductor package. Pick one—cross
posting is seriously discouraged.

There are some topics that should definitely be sent to a special interest
group. For example, questions about garch should go to R-sig-finance. No one
outside of finance knows about garch, nor will they ever. Non-finance people
have no alternative but to think that a garch is someone who lives in Garching.
Garch is a specifically financial model.

Sending the question to the right list is in everyone’s best interest. If you
send a question about garch to R-help, then some of the people most qualified
to answer your question will not see it. There will be thousands of people for
whom the question will be a complete waste of time. There will be people in
the special interest group who could profit from the answers, but who will never
see the answers.

If the functionality you are concerned with is from a contributed package, se-
riously consider writing only to the maintainer of the package. Should you deem
it appropriate to write to a list, then certainly say what package or packages
are involved.

Do NOT file a bug report unless you are absolutely sure it is a bug—bug
reports entail additional work on the part of R Core. If the behavior is discussed
in this document, it is not a bug. Just because something doesn’t work on your
machine, that does not mean it is a problem in R. If there is a question mark
in your statement (or your mind), it is not (yet) a bug. It can not be a bug if
you do not have a reproducible method of exhibiting the behavior. It is a bug
if you have a well-reasoned argument of why the current behavior is bad, it is
not documented to have the current behavior, and you have a patch to fix the
problem. Patches are highly appreciated. Note that “current behavior” means
the buggy behavior needs to be exhibited in the development version of R—do
not consider it enough to only check whatever version of R you happen to be
running. Also check to make sure the bug has not already been reported.
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Figure 11: The thieves by Sandro Botticelli.

Even if it is clearly a bug, it may be inappropriate to file an R bug report.
The bug need not be in R, but may be in some other piece of software. If in any
doubt, send a message to R-devel instead. In particular do not file an R bug
report for a contributed package—send your message to the package maintainer.

Another do not: Do not hijack an existing thread. That will make a mess
for people viewing the list by threads. Make a new message addressed to the
list.

9.6 Use a descriptive subject line

Recall what words you used to search the archives (which you did do) to try
to find an answer to your problem, and use a selection of those. Subjects like
“Problem with code” and “Help!!” are less than perfect. A legacy of your mail
should be to improve things for other users—that is unlikely to happen without
an explicit subject line.

With an appropriate subject, more of the right people will read your message
and hence be in a position to give you an answer.

Do not include words like “urgent”. The help you receive on the mailing
lists is a gift, not a right. Being pushy is likely to engender worse service, not
better service.
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At the other end of the message there is room for your identity. Some people
refuse to respond to anonymous messages. I find it hard to believe that many
people refuse to respond to a message because the sender is identified. So on
balance you may get better response if you identify yourself.

9.7 Clearly state your question

A statement like:

When I use function blahblah, it doesn’t work.

is not a clear statement of your question. We don’t know what “use” means,
we don’t know what you expect “work” to look like, and we don’t know what
“doesn’t work” means.

Explain:

• What function you are using (for example, there are a number of garch
implementations—you need to say which one you are using).

• What you want.

• What you expected.

• Show us what happened.

Sometimes background on why you are asking the question is relevant. Consider
the question:

Is there a way to order pizza with R?

The answer is, of course, “Of course there is a way to order pizza. This *is*
R.”

The question lacks both specificity and background (though it is mercifully
brief). The answer to how to do the operation could depend on whether you
want it delivered, and what size it should be. And do you want anchovies? If
you provide background, you may get an answer that proposes a better—but
entirely different—way of getting nutrients into your bloodstream.

Do not confuse a warning with an error. There are two differences:

1. warnings say “warning” and errors say “error”.

2. the computation continues when there is a warning but is interrupted
when there is an error.

If there really is an error, then give the results of:

traceback()
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The word “crash” is very ambiguous. It would be better if you didn’t use the
word at all. If you do use it, you need to explain exactly what you mean. In
addition to avoiding the use of vague words like “crash”, you can be informative
by displaying the results of sessionInfo().

If error or warning messages are not in English and you are writing to an
English mailing list, then translating pertinent messages would be in your best
interest. But do show the real message as well.

If you are asking if method XYZ is implemented in R, then say that XYZ
stands for Xeric Yare Zeugma (and hence not X-raY Zoometry). Give a brief
explanation and a reference (preferably available online). The same technique,
or something suitably similar, may well go by a different name.

Did I say you should give the results of sessionInfo()? The more infor-
mation about the version of R you are using and your machine, the better. If
the information is accurate, that’s a plus.

9.8 Give a minimal, self-contained example

Note this does not say, “Give an example.” It says to give a minimal, self-
contained example. A minimal, self-contained example allows readers to repro-
duce the problem easily. The easier you make it for your readers, the more likely
you receive help.

The word “minimal” implies an optimization. Elements of that optimization
include:

• Minimize the number of packages involved. Ideal is if a vanilla session
suffices.

• Minimize the number of functions involved.

• Minimize the number and size of datasets involved. If peculiar data are
required and your data are complicated, large and/or proprietary, then
make up some data that exhibits the problem.

Often the process of making a minimal example reveals the problem. If the
problem does not reveal itself, then keep these hints in mind:

• Make your example easy to cut and paste. The dput function is sometimes
useful for this.

• If the example involves random numbers, then use set.seed to make the
numbers non-random.

• Using data that comes with R is often the easiest for your readers.

• Format the code to be easy to understand—the space bar is an excellent
resource.
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It can not be emphasized enough that a message is putting yourself at the mercy
of strangers. If someone has the wit and knowledge to answer your question,
they probably have other things they would like to do. Making your message
clear, concise and user-friendly gives you the best hope of at least one of those
strangers diverting their attention away from their life towards your problem.

9.9 Wait

Don’t send the message immediately. Wait some amount of time—at least 1
hour, at most 1.7348 days. Leave the room you’re in.

Now reread the message from a typical list member’s point of view. The
answer may become apparent. More likely you may see how the question could
be made more clear. Add information that only you know but which the message
assumes the reader knows. Imagine yourself going through all of the steps of
your problem from the beginning.

Send the message in plain text, not html.
Only send the message once. Just because you don’t immediately see your

message on the list does not mean it didn’t go through. Seeing the same message
multiple times annoys people and reduces the chances they will answer you.
There seems to be positive correlation between a person’s level of annoyance at
this and ability to answer questions.

Postscript

Virgil and I came upon the road leading to the bright world. We climbed
through an opening to see once again the stars.

Most of this was stolen from the archives of R-help (thieves are consigned to
Circle 9, as you’ll recall). What spark of life there may be in these scribblings
is due to the contributors of R-help, and to Beatrice.
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